25 research outputs found

    Definitive-intent radiotherapy for sinonasal carcinoma in cats: a multicenter retrospective assessment

    Full text link
    Treatment of epithelial sinonasal tumors in cats is not commonly reported. Palliative radiation protocols have been described more often than definitive-intent protocols. In this multi-institutional retrospective study, we included 27 cats treated with single-modality radiotherapy. Cats were irradiated using 10 daily fractions of 4.2Gy. Three cats (11.1%) experienced a complete clinical response and 17 (63%) had a partial clinical response. Stable clinical disease was noted in three cats (11.1%). Four cats (14.8%) showed progression within 3 months following treatment. The median time to progression for all cases was 269 days (95% CI: 225;314). The proportion of cats free of progression at 1 and 2 years was 24% (95%CI: 22%;26%) and 5% (95%CI: 5%;6%), respectively. None of the prognostic factors evaluated were predictive of outcome (anemia, tumor volume at the time of staging, modified Adams stage, intracranial involvement, facial deformity, epistaxis, inappetence or weight loss). Median overall survival (OS) for all deaths was 452 days (95%CI: 334;571). The proportion of cats alive at 1 and 2 years was 57% (95%CI: 37%;77%) and 27% (95%CI: 25%;29%), respectively. Surprisingly, cats with epistaxis had a longer median OS of 828 days (95%CI: 356;1301) compared to 296 days (95%CI: 85;508) in cats without epistaxis, (p=0.04, Breslow). Radiation therapy used as a single modality for the treatment of feline sinonasal carcinoma improved clinical signs and was well tolerated

    Factors Influencing the Fungal Diversity on Audio–Visual Materials

    No full text
    The biodeterioration of audio–visual materials is a huge problem, as it can cause incalculable losses. To preserve these cultural heritage objects for future generations, it is necessary to determine the main agents of biodeterioration. This study focuses on identifying fungi, both from the air and smears from photographs and cinematographic films that differ in the type of carrier and binder, using high-throughput sequencing approaches. The alpha diversity measures of communities present on all types of carriers were compared, and a significant difference between cellulose acetate and baryta paper was observed. Next, the locality, type of carrier, and audio–visual material seem to affect the structure of fungal communities. Additionally, a link between the occurrence of the most abundant classes and species on audio–visual materials and air contamination in the archives was proven. In both cases, the most abundant classes were Agariomycetes, Dothideomycetes, and Eurotiomycetes, and approximately half of the 50 most abundant species detected on the audio–visual materials and in the air were identical

    Bacterial Diversity on Historical Audio-Visual Materials and in the Atmosphere of Czech Depositories

    No full text
    ABSTRACT Microbial contamination in cultural heritage storage facilities is undoubtedly still a huge problem and leads to the biodeterioration of historical objects and thus the loss of information for future generations. Most studies focus on fungi that colonize materials, which are the primary agents of biodeterioration. However, bacteria also play crucial roles in this process. Therefore, this study focuses on identifying bacteria that colonize audio-visual materials and those present in the air in the archives of the Czech Republic. For our purposes, the Illumina MiSeq amplicon sequencing method was used. Using this method, 18 bacterial genera with an abundance of higher than 1% were identified on audio-visual materials and in the air. We also evaluated some factors that were assumed to possibly influence the composition of bacterial communities on audio-visual materials, of which locality was shown to be significant. Locality also explained most of the variability in bacterial community structure. Furthermore, an association between genera colonizing materials and genera present in the air was demonstrated, and indicator genera were evaluated for each locality. IMPORTANCE The existing literature on microbial contamination of audio-visual materials has predominantly used culture-based methods to evaluate contamination and has overlooked the potential impact of environmental factors and material composition on microbial communities. Furthermore, previous studies have mainly focused on contamination by microscopic fungi, neglecting other potentially harmful microorganisms. To address these gaps in knowledge, our study is the first to provide a comprehensive analysis of bacterial communities present on historical audio-visual materials. Our statistical analyses demonstrate the critical importance of including air analysis in such studies, as airborne microorganisms can significantly contribute to the contamination of these materials. The insights gained from this study are not only valuable in developing effective preventive measures to mitigate contamination but also valuable in identifying targeted disinfection methods for specific types of microorganisms. Overall, our findings highlight the need for a more holistic approach to understanding microbial contamination in cultural heritage materials

    Microbial Communities in Soils and Endosphere of Solanum tuberosum L. and their Response to Long-Term Fertilization

    No full text
    An understanding of how fertilization influences endophytes is crucial for sustainable agriculture, since the manipulation of the plant microbiome could affect plant fitness and productivity. This study was focused on the response of microbial communities in the soil and tubers to the regular application of manure (MF; 330 kg N/ha), sewage sludge (SF; 330 and SF3x; 990 kg N/ha), and chemical fertilizer (NPK; 330-90-300 kg N-P-K/ha). Unfertilized soil was used as a control (CF), and the experiment was set up at two distinct sites. All fertilization treatments significantly altered the prokaryotic and fungal communities in soil, whereas the influence of fertilization on the community of endophytes differed for each site. At the site with cambisol, prokaryotic and fungal endophytes were significantly shifted by MF and SF3 treatments. At the site with chernozem, neither the prokaryotic nor fungal endophytic communities were significantly associated with fertilization treatments. Fertilization significantly increased the relative abundance of the plant-beneficial bacteria Stenotrophomonas, Sphingomonas and the arbuscular mycorrhizal fungi. In tubers, the relative abundance of Fusarium was lower in MF-treated soil compared to CF. Although fertilization treatments clearly influenced the soil and endophytic community structure, we did not find any indication of human pathogens being transmitted into tubers via organic fertilizers

    Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for <em>Staphylococcus Aureus</em>

    No full text
    Although nanomaterials are used in many fields, little is known about the fundamental interactions between nanomaterials and microorganisms. To test antimicrobial properties and retention ability, 13 electrospun polyamide (PA) nanomaterials with different morphology and functionalization with various concentrations of AgNO3 and chlorhexidine (CHX) were analyzed. Staphylococcus aureus CCM 4516 was used to verify the designed nanomaterials’ inhibition and permeability assays. All functionalized PAs suppressed bacterial growth, and the most effective antimicrobial nanomaterial was evaluated to be PA 12% with 4.0 wt% CHX (inhibition zones: 2.9 ± 0.2 mm; log10 suppression: 8.9 ± 0.0; inhibitory rate: 100.0%). Furthermore, the long-term stability of all functionalized PAs was tested. These nanomaterials can be stored at least nine months after their preparation without losing their antibacterial effect. A filtration apparatus was constructed for testing the retention of PAs. All of the PAs effectively retained the filtered bacteria with log10 removal of 3.3–6.8 and a retention rate of 96.7–100.0%. Surface density significantly influenced the retention efficiency of PAs (p ≤ 0.01), while the effect of fiber diameter was not confirmed (p ≥ 0.05). Due to their stability, retention, and antimicrobial properties, they can serve as a model for medical or filtration applications
    corecore