121 research outputs found
Second order gauge invariant gravitational perturbations of a Kerr black hole
We investigate higher than the first order gravitational perturbations in the
Newman-Penrose formalism. Equations for the Weyl scalar representing
outgoing gravitational radiation, can be uncoupled into a single wave equation
to any perturbative order. For second order perturbations about a Kerr black
hole, we prove the existence of a first and second order gauge (coordinates)
and tetrad invariant waveform, , by explicit construction. This
waveform is formed by the second order piece of plus a term, quadratic
in first order perturbations, chosen to make totally invariant and to
have the appropriate behavior in an asymptotically flat gauge.
fulfills a single wave equation of the form where is the same wave operator as for first order perturbations and is a
source term build up out of (known to this level) first order perturbations. We
discuss the issues of imposition of initial data to this equation, computation
of the energy and momentum radiated and wave extraction for direct comparison
with full numerical approaches to solve Einstein equations.Comment: 19 pages, REVTEX. Some misprints corrected and changes to improve
presentation. Version to appear in PR
The Employment of Mothers and the Outcomes of their Pregnancies: An Australian Study
One of the more dramatic structural changes in a number of western industrial societies has involved the increased participation of women in the paid labour force. Little is known about the health consequences of this change. This paper reports the findings of a prospective longitudinal study of 8,556 pregnant women who were interviewed on three occasions; early in their pregnancy, shortly after the birth of the baby and some six months later. Additional data were derived from the medical record of the delivery. The findings suggest that employed women and housewives differ in their health behaviour (e.g. number of missed appointments, attendance at antenatal classes, smoking) and emotional health in pregnancy, but that there are no significant differences between employed women and housewives in their physical health or pregnancy outcomes. Although none of the differences was statistically significant, virtually all of the indices of outcome were slightly more favourable for the housewives than for the employed women
An embedded cohesive crack model for finite element analysis of brickwork masonry fracture
This paper presents a numerical procedure for fracture of brickwork masonry based on the strong discontinuity approach. The model is an extension of the cohesive model prepared by the authors for concrete, and takes into account the anisotropy of the material. A simple central-force model is used for the stress versus crack opening curve. The additional degrees of freedom defining the crack opening are determined at the crack level, thus avoiding the need of performing a static condensation at the element level. The need for a tracking algorithm is avoided by using a consistent procedure for the selection of the separated nodes. Such a model is then implemented into a commercial code by means of a user subroutine, consequently being contrasted with experimental results. Fracture properties of masonry are independently measured for two directions on the composed masonry, and then input in the numerical model. This numerical procedure accurately predicts the experimental mixed-mode fracture records for different orientations of the brick layers on masonry panels
Leaving no patient behind! Expert recommendation in the use of innovative technologies for diagnosing rare diseases
Genetic diagnosis plays a crucial role in rare diseases, particularly with the increasing availability of emerging and accessible treatments. The International Rare Diseases Research Consortium (IRDiRC) has set its primary goal as: âEnsuring that all patients who present with a suspected rare disease receive a diagnosis within one year if their disorder is documented in the medical literatureâ. Despite significant advances in genomic sequencing technologies, more than half of the patients with suspected Mendelian disorders remain undiagnosed. In response, IRDiRC proposes the establishment of âa globally coordinated diagnostic and research pipelineâ. To help facilitate this, IRDiRC formed the Task Force on Integrating New Technologies for Rare Disease Diagnosis. This multi-stakeholder Task Force aims to provide an overview of the current state of innovative diagnostic technologies for clinicians and researchers, focusing on the patientâs diagnostic journey. Herein, we provide an overview of a broad spectrum of emerging diagnostic technologies involving genomics, epigenomics and multi-omics, functional testing and model systems, data sharing, bioinformatics, and Artificial Intelligence (AI), highlighting their advantages, limitations, and the current state of clinical adaption. We provide expert recommendations outlining the stepwise application of these innovative technologies in the diagnostic pathways while considering global differences in accessibility. The importance of FAIR (Findability, Accessibility, Interoperability, and Reusability) and CARE (Collective benefit, Authority to control, Responsibility, and Ethics) data management is emphasized, along with the need for enhanced and continuing education in medical genomics. We provide a perspective on future technological developments in genome diagnostics and their integration into clinical practice. Lastly, we summarize the challenges related to genomic diversity and accessibility, highlighting the significance of innovative diagnostic technologies, global collaboration, and equitable access to diagnosis and treatment for people living with rare disease
Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs
Substance abuse and addiction are the most costly of all the neuropsychiatric disorders. In the last decades, much progress has been achieved in understanding the effects of the drugs of abuse in the brain. However, efficient treatments that prevent relapse have not been developed. Drug addiction is now considered a brain disease, because the abuse of drugs affects several brain functions. Neurological impairments observed in drug addicts may reflect drug-induced neuronal dysfunction and neurotoxicity. The drugs of abuse directly or indirectly affect neurotransmitter systems, particularly dopaminergic and glutamatergic neurons. This review explores the literature reporting cellular and molecular alterations reflecting the cytotoxicity induced by amphetamines, cocaine and opiates in neuronal systems. The neurotoxic effects of drugs of abuse are often associated with oxidative stress, mitochondrial dysfunction, apoptosis and inhibition of neurogenesis, among other mechanisms. Understanding the mechanisms that underlie brain dysfunction observed in drug-addicted individuals may contribute to improve the treatment of drug addiction, which may have social and economic consequences.http://www.sciencedirect.com/science/article/B6SYS-4S50K2J-1/1/7d11c902193bfa3f1f57030572f7034
- âŠ