78 research outputs found

    Brain-age is associated with progression to dementia in memory clinic patients

    Get PDF
    Background: Biomarkers for the early detection of dementia risk hold promise for better disease monitoring and targeted interventions. However, most biomarker studies, particularly in neuroimaging, have analysed artificially ‘clean’ research groups, free from comorbidities, erroneous referrals, contraindications and from a narrow sociodemographic pool. Such biases mean that neuroimaging samples are often unrepresentative of the target population for dementia risk (e.g., people referred to a memory clinic), limiting the generalisation of these studies to real-world clinical settings. To facilitate better translation from research to the clinic, datasets that are more representative of dementia patient groups are warranted. Methods: We analysed T1-weighted MRI scans from a real-world setting of patients referred to UK memory clinic services (n = 1140; 60.2 % female and mean [SD] age of 70.0[10.8] years) to derive ‘brain-age’. Brain-age is an index of age-related brain health based on quantitative analysis of structural neuroimaging, largely reflecting brain atrophy. Brain-predicted age difference (brain-PAD) was calculated as brain-age minus chronological age. We determined which patients went on to develop dementia between three months and 7.8 years after neuroimaging assessment (n = 476) using linkage to electronic health records. Results: Survival analysis, using Cox regression, indicated a 3 % increased risk of dementia per brain-PAD year (hazard ratio [95 % CI] = 1.03 [1.02,1.04], p < 0.0001), adjusted for baseline age, age2, sex, Mini Mental State Examination (MMSE) score and normalised brain volume. In sensitivity analyses, brain-PAD remained significant when time-to-dementia was at least 3 years (hazard ratio [95 % CI] = 1.06 [1.02, 1.09], p = 0.0006), or when baseline MMSE score ≥ 27 (hazard ratio [95 % CI] = 1.03 [1.01, 1.05], p = 0.0006). Conclusions: Memory clinic patients with older‐appearing brains are more likely to receive a subsequent dementia diagnosis. Potentially, brain-age could aid decision-making during initial memory clinic assessment to improve early detection of dementia. Even when neuroimaging assessment was more than 3 years prior to diagnosis and when cognitive functioning was not clearly impaired, brain-age still proved informative. These real-world results support the use of quantitative neuroimaging biomarkers like brain-age in memory clinics

    Detection of stable community structures within gut microbiota co-occurrence networks from different human populations

    Get PDF
    Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses

    Integrating Comprehensive Geriatric Assessment for people with COPD and frailty starting pulmonary rehabilitation: the Breathe Plus feasibility trial protocol.

    Get PDF
    One in five people with COPD also lives with frailty. People living with both COPD and frailty are at increased risk of poorer health and outcomes, and face challenges to completing pulmonary rehabilitation. Integrated approaches that are adapted to the additional context of frailty are required. The aim of the present study is to determine the feasibility of conducting a randomised controlled trial of an integrated Comprehensive Geriatric Assessment for people with COPD and frailty starting pulmonary rehabilitation. This is a multicentre, mixed-methods, assessor-blinded, randomised, parallel group, controlled feasibility trial ("Breathe Plus"; ISRCTN13051922). We aim to recruit 60 people aged ≥50 with both COPD and frailty referred for pulmonary rehabilitation. Participants will be randomised 1:1 to receive usual pulmonary rehabilitation, or pulmonary rehabilitation with an additional Comprehensive Geriatric Assessment. Outcomes (physical, psycho-social and service use) will be measured at baseline, 90 days and 180 days. We will also collect service and trial process data, and conduct qualitative interviews with a sub-group of participants and staff. We will undertake descriptive analysis of quantitative feasibility outcomes (recruitment, retention, missing data, blinding, contamination, fidelity), and framework analysis of qualitative feasibility outcomes (intervention acceptability and theory, outcome acceptability). Recommendations on progression to a full trial will comprise integration of quantitative and qualitative data, with input from relevant stakeholders. This study has been approved by a UK Research Ethics Committee (ref.: 19/LO/1402). This protocol describes the first study testing the feasibility of integrating a Comprehensive Geriatric Assessment alongside pulmonary rehabilitation, and testing this intervention within a mixed-methods randomised controlled trial

    Geo-social gradients in predicted COVID-19 prevalence in Great Britain: results from 1 960 242 users of the COVID-19 Symptoms Study app

    Get PDF
    Understanding the geographical distribution of COVID-19 through the general population is key to the provision of adequate healthcare services. Using self-reported data from 1 960 242 unique users in Great Britain (GB) of the COVID-19 Symptom Study app, we estimated that, concurrent to the GB government sanctioning lockdown, COVID-19 was distributed across GB, with evidence of ’urban hotspots’. We found a geo-social gradient associated with predicted disease prevalence suggesting urban areas and areas of higher deprivation are most affected. Our results demonstrate use of self-reported symptoms data to provide focus on geographical areas with identified risk factors

    Geo-social gradients in predicted COVID-19 prevalence in Great Britain: results from 1 960 242 users of the COVID-19 Symptoms Study app

    Get PDF
    Understanding the geographical distribution of COVID-19 through the general population is key to the provision of adequate healthcare services. Using self-reported data from 1 960 242 unique users in Great Britain (GB) of the COVID-19 Symptom Study app, we estimated that, concurrent to the GB government sanctioning lockdown, COVID-19 was distributed across GB, with evidence of ’urban hotspots’. We found a geo-social gradient associated with predicted disease prevalence suggesting urban areas and areas of higher deprivation are most affected. Our results demonstrate use of self-reported symptoms data to provide focus on geographical areas with identified risk factors

    Symptoms and syndromes associated with SARS-CoV-2 infection and severity in pregnant women from two community cohorts

    Get PDF
    We tested whether pregnant and non-pregnant women differ in COVID-19 symptom profile and severity, and we extended previous investigations on hospitalized pregnant women to those who did not require hospitalization. Two female community-based cohorts (18-44 years) provided longitudinal (smartphone application, N = 1,170,315, n = 79 pregnant tested positive) and cross-sectional (web-based survey, N = 1,344,966, n = 134 pregnant tested positive) data, prospectively collected through self-participatory citizen surveillance in UK, Sweden and USA. Pregnant and non-pregnant were compared for frequencies of events, including SARS-CoV-2 testing, symptoms and hospitalization rates. Multivariable regression was used to investigate symptoms severity and comorbidity effects. Pregnant and non-pregnant women positive for SARS-CoV-2 infection were not different in syndromic severity, except for gastrointestinal symptoms. Pregnant were more likely to have received testing, despite reporting fewer symptoms. Pre-existing lung disease was most closely associated with syndromic severity in pregnant hospitalized. Heart and kidney diseases and diabetes increased risk. The most frequent symptoms among non-hospitalized women were anosmia [63% pregnant, 92% non-pregnant] and headache [72%, 62%]. Cardiopulmonary symptoms, including persistent cough [80%] and chest pain [73%], were more frequent among pregnant who were hospitalized. Consistent with observations in non-pregnant populations, lung disease and diabetes were associated with increased risk of more severe SARS-CoV-2 infection during pregnancy

    Distinct clinical symptom patterns in patients hospitalised with COVID-19 in an analysis of 59,011 patients in the ISARIC-4C study

    Get PDF
    COVID-19 is clinically characterised by fever, cough, and dyspnoea. Symptoms affecting other organ systems have been reported. However, it is the clinical associations of different patterns of symptoms which influence diagnostic and therapeutic decision-making. In this study, we applied clustering techniques to a large prospective cohort of hospitalised patients with COVID-19 to identify clinically meaningful sub-phenotypes. We obtained structured clinical data on 59,011 patients in the UK (the ISARIC Coronavirus Clinical Characterisation Consortium, 4C) and used a principled, unsupervised clustering approach to partition the first 25,477 cases according to symptoms reported at recruitment. We validated our findings in a second group of 33,534 cases recruited to ISARIC-4C, and in 4,445 cases recruited to a separate study of community cases. Unsupervised clustering identified distinct sub-phenotypes. First, a core symptom set of fever, cough, and dyspnoea, which co-occurred with additional symptoms in three further patterns: fatigue and confusion, diarrhoea and vomiting, or productive cough. Presentations with a single reported symptom of dyspnoea or confusion were also identified, alongside a sub-phenotype of patients reporting few or no symptoms. Patients presenting with gastrointestinal symptoms were more commonly female, had a longer duration of symptoms before presentation, and had lower 30-day mortality. Patients presenting with confusion, with or without core symptoms, were older and had a higher unadjusted mortality. Symptom sub-phenotypes were highly consistent in replication analysis within the ISARIC-4C study. Similar patterns were externally verified in patients from a study of self-reported symptoms of mild disease. The large scale of the ISARIC-4C study enabled robust, granular discovery and replication. Clinical interpretation is necessary to determine which of these observations have practical utility. We propose that four sub-phenotypes are usefully distinct from the core symptom group: gastro-intestinal disease, productive cough, confusion, and pauci-symptomatic presentations. Importantly, each is associated with an in-hospital mortality which differs from that of patients with core symptoms

    Early detection of COVID-19 in the UK using self-reported symptoms: a large-scale, prospective, epidemiological surveillance study

    Get PDF
    Background Self-reported symptoms during the COVID-19 pandemic have been used to train artificial intelligence models to identify possible infection foci. To date, these models have only considered the culmination or peak of symptoms, which is not suitable for the early detection of infection. We aimed to estimate the probability of an individual being infected with SARS-CoV-2 on the basis of early self-reported symptoms to enable timely self-isolation and urgent testing. Methods In this large-scale, prospective, epidemiological surveillance study, we used prospective, observational, longitudinal, self-reported data from participants in the UK on 19 symptoms over 3 days after symptoms onset and COVID-19 PCR test results extracted from the COVID-19 Symptom Study mobile phone app. We divided the study population into a training set (those who reported symptoms between April 29, 2020, and Oct 15, 2020) and a test set (those who reported symptoms between Oct 16, 2020, and Nov 30, 2020), and used three models to analyse the selfreported symptoms: the UK’s National Health Service (NHS) algorithm, logistic regression, and the hierarchical Gaussian process model we designed to account for several important variables (eg, specific COVID-19 symptoms, comorbidities, and clinical information). Model performance to predict COVID-19 positivity was compared in terms of sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) in the test set. For the hierarchical Gaussian process model, we also evaluated the relevance of symptoms in the early detection of COVID-19 in population subgroups stratified according to occupation, sex, age, and body-mass index. Findings The training set comprised 182 991 participants and the test set comprised 15 049 participants. When trained on 3 days of self-reported symptoms, the hierarchical Gaussian process model had a higher prediction AUC (0·80 [95% CI 0·80–0·81]) than did the logistic regression model (0·74 [0·74–0·75]) and the NHS algorithm (0·67 [0·67–0·67]). AUCs for all models increased with the number of days of self-reported symptoms, but were still high for the hierarchical Gaussian process model at day 1 (0·73 [95% CI 0·73–0·74]) and day 2 (0·79 [0·78–0·79]). At day 3, the hierarchical Gaussian process model also had a significantly higher sensitivity, but a non-statistically lower specificity, than did the two other models. The hierarchical Gaussian process model also identified different sets of relevant features to detect COVID-19 between younger and older subgroups, and between health-care workers and non-health-care workers. When used during different pandemic periods, the model was robust to changes in populations. Interpretation Early detection of SARS-CoV-2 infection is feasible with our model. Such early detection is crucial to contain the spread of COVID-19 and efficiently allocate medical resources. Funding ZOE, the UK Government Department of Health and Social Care, the Wellcome Trust, the UK Engineering and Physical Sciences Research Council, the UK National Institute for Health Research, the UK Medical Research Council, the British Heart Foundation, the Alzheimer’s Society, the Chronic Disease Research Foundation, and the Massachusetts Consortium on Pathogen Readiness

    Distinct clinical symptom patterns in patients hospitalised with COVID-19 in an analysis of 59,011 patients in the ISARIC-4C study

    Get PDF
    COVID-19 is clinically characterised by fever, cough, and dyspnoea. Symptoms affecting other organ systems have been reported. However, it is the clinical associations of different patterns of symptoms which influence diagnostic and therapeutic decision-making. In this study, we applied clustering techniques to a large prospective cohort of hospitalised patients with COVID-19 to identify clinically meaningful sub-phenotypes. We obtained structured clinical data on 59,011 patients in the UK (the ISARIC Coronavirus Clinical Characterisation Consortium, 4C) and used a principled, unsupervised clustering approach to partition the first 25,477 cases according to symptoms reported at recruitment. We validated our findings in a second group of 33,534 cases recruited to ISARIC-4C, and in 4,445 cases recruited to a separate study of community cases. Unsupervised clustering identified distinct sub-phenotypes. First, a core symptom set of fever, cough, and dyspnoea, which co-occurred with additional symptoms in three further patterns: fatigue and confusion, diarrhoea and vomiting, or productive cough. Presentations with a single reported symptom of dyspnoea or confusion were also identified, alongside a sub-phenotype of patients reporting few or no symptoms. Patients presenting with gastrointestinal symptoms were more commonly female, had a longer duration of symptoms before presentation, and had lower 30-day mortality. Patients presenting with confusion, with or without core symptoms, were older and had a higher unadjusted mortality. Symptom sub-phenotypes were highly consistent in replication analysis within the ISARIC-4C study. Similar patterns were externally verified in patients from a study of self-reported symptoms of mild disease. The large scale of the ISARIC-4C study enabled robust, granular discovery and replication. Clinical interpretation is necessary to determine which of these observations have practical utility. We propose that four sub-phenotypes are usefully distinct from the core symptom group: gastro-intestinal disease, productive cough, confusion, and pauci-symptomatic presentations. Importantly, each is associated with an in-hospital mortality which differs from that of patients with core symptoms
    corecore