223 research outputs found

    On an asymptotic estimate of the nn-loop correction in perturbative QCD

    Full text link
    A recently proposed method of estimating the asymptotic behaviour of QCD perturbation theory coefficients is critically reviewed and shown to contain numerous invalid mathematical operations and unsubstantiated assumptions. We discuss in detail why this procedure, based solely on renormalization group (RG) considerations and analyticity constraints, cannot lead to such estimates. We stress the importance of correct renormalization scheme (RS) dependence of any meaningful asymptotic estimate and argue that the unambiguous summation of QCD perturbation expansions for physical quantities requires information from outside of perturbation theory itself.Comment: PRA-HEP-92/17, Latex, 20 pages of text plus 5 figures contained in 5 separate PS files. Four of them (corresponding to Figs.1,2,3,5) are appended at the end of this file, the (somewhat larger one) corresponding to Fig.4 can be obtained from any of the mentioned E-mail addresses upon request. E-mail connections: J. Chyla - [email protected]) or h1kchy@dhhdesy3 P. Kolar - [email protected]

    Scale setting for alpha_s beyond leading order

    Full text link
    We present a general procedure for incorporating higher-order information into the scale-setting prescription of Brodsky, Lepage and Mackenzie. In particular, we show how to apply this prescription when the leading coefficient or coefficients in a series in the strong coupling alpha_s are anomalously small and the original prescription can give an unphysical scale. We give a general method for computing an optimum scale numerically, within dimensional regularization, and in cases when the coefficients of a series are known. We apply it to the heavy quark mass and energy renormalization in lattice NRQCD, and to a variety of known series. Among the latter, we find significant corrections to the scales for the ratio of e+e- to hadrons over muons, the ratio of the quark pole to MSbar mass, the semi-leptonic B-meson decay width, and the top decay width. Scales for the latter two decay widths, expressed in terms of MSbar masses, increase by factors of five and thirteen, respectively, substantially reducing the size of radiative corrections.Comment: 39 pages, 15 figures, 5 tables, LaTeX2

    Nonperturbative Effects from the Resummation of Perturbation Theory

    Get PDF
    Using the general argument in Borel resummation of perturbation theory that links the divergent perturbation theory to the nonperturbative effect we argue that the nonperturbative effect associated with the perturbation theory should have a branch cut only along the positive real axis in the complex coupling plane. The component in the weak coupling expansion of the nonperturbative amplitude, which usually includes the leading term in the weak coupling expansion, that gives rise to the branch cut can be calculated in principle from the perturbation theory combined with some exactly calculable properties of the nonperturbative effect. The realization of this mechanism is demonstrated in the double well potential and the two-dimensional O(N) nonlinear sigma model. In these models the leading term in weak coupling of the nonperturbative effect can be obtained with good accuracy from the first terms of the perturbation theory. Applying this mechanism to the infrared renormalon induced nonperturbative effect in QCD, we suggest some of the QCD condensate effects can be calculated in principle from the perturbation theory.Comment: 21 Pages, 1 Figure; To appear in Phys Rev

    Two-Loop O(αsGFmt2){\cal O}(\alpha_sG_Fm_t^2) Corrections to the Fermionic Decay Rates of the Standard-Model Higgs Boson

    Full text link
    Low- and intermediate mass Higgs bosons decay preferably into fermion pairs. The one-loop electroweak corrections to the respective decay rates are dominated by a flavour-independent term of O(GFmt2){\cal O}(G_Fm_t^2). We calculate the two-loop gluon correction to this term. It turns out that this correction screens the leading high-mtm_t behaviour of the one-loop result by roughly 10\%. We also present the two-loop QCD correction to the contribution induced by a pair of fourth-generation quarks with arbitrary masses. As expected, the inclusion of the QCD correction considerably reduces the renormalization-scheme dependence of the prediction.Comment: 14 pages, latex, figures 2-5 appended, DESY 94-08

    Resummation of the hadronic tau decay width with the modified Borel transform method

    Get PDF
    A modified Borel transform of the Adler function is used to resum the hadronic tau decay width ratio. In contrast to the ordinary Borel transform, the integrand of the Borel integral is renormalization--scale invariant. We use an ansatz which explicitly accounts for the structure of the leading infrared renormalon. Further, we use judiciously chosen conformal transformations for the Borel variable, in order to map sufficiently away from the origin the other ultraviolet and infrared renormalon singularities. In addition, we apply Pade approximants for the corresponding truncated perturbation series of the modified Borel transform, in order to further accelerate the convergence. Comparing the results with the presently available experimental data on the tau hadronic decay width ratio, we obtain αs(Mz)=0.1192+0.0007exp.+0.0010EW+CKM+0.0009th.+0.0003evol.\alpha_s(M^z) = 0.1192 +- 0.0007_{exp.} +- 0.0010_{EW+CKM} +- 0.0009_{th.} +- 0.0003_{evol.}. These predictions virtually agree with those of our previous resummations where we used ordinary Borel transforms instead.Comment: 32 pages, 2 eps-figures, revtex; minor changes in the formulations; a typo in Eq.(47) corrected; version as appearing in Phys. Rev.

    Strong coupling constant from τ\tau decay within renormalization scheme invariant treatment

    Get PDF
    We extract a numerical value for the strong coupling constant \alpha_s from the \tau-lepton decay rate into nonstrange particles. A new feature of our procedure is the explicit use of renormalization scheme invariance in analytical form in order to perform the actual analysis in a particular renormalization scheme. For the reference coupling constant in the \MSsch-scheme we obtain \alpha_s(M_\tau)= 0.3184 \pm 0.0060_{exp} which corresponds to \al_s(M_Z)= 0.1184 \pm 0.0007_{exp} \pm 0.0006_{hq mass}. This new numerical value is smaller than the standard value from τ\tau-data quoted in the literature and is closer to \al_s(M_Z)-values obtained from high energy experiments.Comment: 8 page

    A Study of Ultraviolet Renormalon Ambiguities in the Determination of \as from τ\tau Decay

    Full text link
    The divergent large-order behaviour of the perturbative series relevant for the determination of \as from τ\tau decay is controlled by the leading ultraviolet (UV) renormalon. Even in the absence of the first infrared (IR) renormalon, an ambiguity of order Λ2/mτ2\Lambda^2/m_\tau^2 is introduced. We make a quantitative study of the practical implications of this ambiguity. We discuss the magnitude of UV renormalon corrections obtained in the large-NfN_f limit, which, although unrealistic, is nevertheless interesting to some extent. We then study a number of improved approximants for the perturbative series, based on a change of variable in the Borel representation, such as to displace the leading UV renormalon singularity at a larger distance from the origin than the first IR renormalon. The spread of the resulting values of \as(m^2_\tau) obtained by different approximants, at different renormalization scales, is exhibited as a measure of the underlying ambiguities. Finally, on the basis of mathematical models, we discuss the prospects of an actual improvement, given the signs and magnitudes of the computed coefficients, the size of \as(m^2_\tau) and what is known of the asymptotic properties of the series. Our conclusion is that a realistic estimate of the theoretical error cannot go below \delta\as(m^2_\tau) \sim \pm 0.060, or \delta\as(m^2_{\sss Z}) \sim \pm 0.006.Comment: 32 pages, epsfig.sty

    The Determination of alpha_s from Tau Decays Revisited

    Full text link
    We revisit the determination of alpha_s(m_tau) using a fit to inclusive tau hadronic spectral moments in light of (1) the recent calculation of the fourth-order perturbative coefficient K_4 in the expansion of the Adler function, (2) new precision measurements from BABAR of e+e- annihilation cross sections, which decrease the uncertainty in the separation of vector and axial-vector spectral functions, and (3) improved results from BABAR and Belle on tau branching fractions involving kaons. We estimate that the fourth-order perturbative prediction reduces the theoretical uncertainty, introduced by the truncation of the series, by 20% with respect to earlier determinations. We discuss to some detail the perturbative prediction and show that the effect of the incomplete knowledge of the series is reduced by using the so-called contour-improved calculation, as opposed to fixed-order perturbation theory which manifests convergence problems. The corresponding theoretical uncertainties are studied at the tau and Z mass scales. Nonperturbative contributions extracted from the most inclusive fit are small, in agreement with earlier determinations. Systematic effects from quark-hadron duality violation are estimated with simple models and found to be within the quoted systematic errors. The fit gives alpha_s(m_tau) = 0.344 +- 0.005 +- 0.007, where the first error is experimental and the second theoretical. After evolution to M_Z we obtain alpha_s(M_Z) = 0.1212 +- 0.0005 +- 0.0008 +- 0.0005, where the errors are respectively experimental, theoretical and due to the evolution. The result is in agreement with the corresponding NNNLO value derived from essentially the Z width in the global electroweak fit. The alpha_s(M_Z) determination from tau decays is the most precise one to date.Comment: 22 pages, 7 figure

    The renormalization group inspired approaches and estimates of the tenth-order corrections to the muon anomaly in QED

    Get PDF
    We present the estimates of the five-loop QED corrections to the muon anomaly using the scheme-invariant approaches and demonstrate that they are in good agreement with the results of exact calculations of the corresponding tenth-order diagrams supplemented by the additional guess about the values of the non-calculated contributions.Comment: LATEX 15 pages, figures available upon request; preprint CERN-TH.7518/9
    corecore