223 research outputs found
On an asymptotic estimate of the -loop correction in perturbative QCD
A recently proposed method of estimating the asymptotic behaviour of QCD
perturbation theory coefficients is critically reviewed and shown to contain
numerous invalid mathematical operations and unsubstantiated assumptions. We
discuss in detail why this procedure, based solely on renormalization group
(RG) considerations and analyticity constraints, cannot lead to such estimates.
We stress the importance of correct renormalization scheme (RS) dependence of
any meaningful asymptotic estimate and argue that the unambiguous summation of
QCD perturbation expansions for physical quantities requires information from
outside of perturbation theory itself.Comment: PRA-HEP-92/17, Latex, 20 pages of text plus 5 figures contained in 5
separate PS files. Four of them (corresponding to Figs.1,2,3,5) are appended
at the end of this file, the (somewhat larger one) corresponding to Fig.4 can
be obtained from any of the mentioned E-mail addresses upon request. E-mail
connections: J. Chyla - [email protected]) or h1kchy@dhhdesy3 P. Kolar -
[email protected]
Scale setting for alpha_s beyond leading order
We present a general procedure for incorporating higher-order information
into the scale-setting prescription of Brodsky, Lepage and Mackenzie. In
particular, we show how to apply this prescription when the leading coefficient
or coefficients in a series in the strong coupling alpha_s are anomalously
small and the original prescription can give an unphysical scale. We give a
general method for computing an optimum scale numerically, within dimensional
regularization, and in cases when the coefficients of a series are known. We
apply it to the heavy quark mass and energy renormalization in lattice NRQCD,
and to a variety of known series. Among the latter, we find significant
corrections to the scales for the ratio of e+e- to hadrons over muons, the
ratio of the quark pole to MSbar mass, the semi-leptonic B-meson decay width,
and the top decay width. Scales for the latter two decay widths, expressed in
terms of MSbar masses, increase by factors of five and thirteen, respectively,
substantially reducing the size of radiative corrections.Comment: 39 pages, 15 figures, 5 tables, LaTeX2
Nonperturbative Effects from the Resummation of Perturbation Theory
Using the general argument in Borel resummation of perturbation theory that
links the divergent perturbation theory to the nonperturbative effect we argue
that the nonperturbative effect associated with the perturbation theory should
have a branch cut only along the positive real axis in the complex coupling
plane. The component in the weak coupling expansion of the nonperturbative
amplitude, which usually includes the leading term in the weak coupling
expansion, that gives rise to the branch cut can be calculated in principle
from the perturbation theory combined with some exactly calculable properties
of the nonperturbative effect. The realization of this mechanism is
demonstrated in the double well potential and the two-dimensional O(N)
nonlinear sigma model. In these models the leading term in weak coupling of the
nonperturbative effect can be obtained with good accuracy from the first terms
of the perturbation theory. Applying this mechanism to the infrared renormalon
induced nonperturbative effect in QCD, we suggest some of the QCD condensate
effects can be calculated in principle from the perturbation theory.Comment: 21 Pages, 1 Figure; To appear in Phys Rev
Two-Loop Corrections to the Fermionic Decay Rates of the Standard-Model Higgs Boson
Low- and intermediate mass Higgs bosons decay preferably into fermion pairs.
The one-loop electroweak corrections to the respective decay rates are
dominated by a flavour-independent term of . We calculate
the two-loop gluon correction to this term. It turns out that this correction
screens the leading high- behaviour of the one-loop result by roughly
10\%. We also present the two-loop QCD correction to the contribution induced
by a pair of fourth-generation quarks with arbitrary masses. As expected, the
inclusion of the QCD correction considerably reduces the renormalization-scheme
dependence of the prediction.Comment: 14 pages, latex, figures 2-5 appended, DESY 94-08
Resummation of the hadronic tau decay width with the modified Borel transform method
A modified Borel transform of the Adler function is used to resum the
hadronic tau decay width ratio. In contrast to the ordinary Borel transform,
the integrand of the Borel integral is renormalization--scale invariant. We use
an ansatz which explicitly accounts for the structure of the leading infrared
renormalon. Further, we use judiciously chosen conformal transformations for
the Borel variable, in order to map sufficiently away from the origin the other
ultraviolet and infrared renormalon singularities. In addition, we apply Pade
approximants for the corresponding truncated perturbation series of the
modified Borel transform, in order to further accelerate the convergence.
Comparing the results with the presently available experimental data on the tau
hadronic decay width ratio, we obtain . These predictions
virtually agree with those of our previous resummations where we used ordinary
Borel transforms instead.Comment: 32 pages, 2 eps-figures, revtex; minor changes in the formulations; a
typo in Eq.(47) corrected; version as appearing in Phys. Rev.
Strong coupling constant from decay within renormalization scheme invariant treatment
We extract a numerical value for the strong coupling constant \alpha_s from
the \tau-lepton decay rate into nonstrange particles. A new feature of our
procedure is the explicit use of renormalization scheme invariance in
analytical form in order to perform the actual analysis in a particular
renormalization scheme. For the reference coupling constant in the
\MSsch-scheme we obtain \alpha_s(M_\tau)= 0.3184 \pm 0.0060_{exp} which
corresponds to \al_s(M_Z)= 0.1184 \pm 0.0007_{exp} \pm 0.0006_{hq mass}. This
new numerical value is smaller than the standard value from -data quoted
in the literature and is closer to \al_s(M_Z)-values obtained from high energy
experiments.Comment: 8 page
A Study of Ultraviolet Renormalon Ambiguities in the Determination of \as from Decay
The divergent large-order behaviour of the perturbative series relevant for
the determination of \as from decay is controlled by the leading
ultraviolet (UV) renormalon. Even in the absence of the first infrared (IR)
renormalon, an ambiguity of order is introduced. We make a
quantitative study of the practical implications of this ambiguity. We discuss
the magnitude of UV renormalon corrections obtained in the large- limit,
which, although unrealistic, is nevertheless interesting to some extent. We
then study a number of improved approximants for the perturbative series, based
on a change of variable in the Borel representation, such as to displace the
leading UV renormalon singularity at a larger distance from the origin than the
first IR renormalon. The spread of the resulting values of \as(m^2_\tau)
obtained by different approximants, at different renormalization scales, is
exhibited as a measure of the underlying ambiguities. Finally, on the basis of
mathematical models, we discuss the prospects of an actual improvement, given
the signs and magnitudes of the computed coefficients, the size of
\as(m^2_\tau) and what is known of the asymptotic properties of the series.
Our conclusion is that a realistic estimate of the theoretical error cannot go
below \delta\as(m^2_\tau) \sim \pm 0.060, or \delta\as(m^2_{\sss Z}) \sim
\pm 0.006.Comment: 32 pages, epsfig.sty
The Determination of alpha_s from Tau Decays Revisited
We revisit the determination of alpha_s(m_tau) using a fit to inclusive tau
hadronic spectral moments in light of (1) the recent calculation of the
fourth-order perturbative coefficient K_4 in the expansion of the Adler
function, (2) new precision measurements from BABAR of e+e- annihilation cross
sections, which decrease the uncertainty in the separation of vector and
axial-vector spectral functions, and (3) improved results from BABAR and Belle
on tau branching fractions involving kaons. We estimate that the fourth-order
perturbative prediction reduces the theoretical uncertainty, introduced by the
truncation of the series, by 20% with respect to earlier determinations. We
discuss to some detail the perturbative prediction and show that the effect of
the incomplete knowledge of the series is reduced by using the so-called
contour-improved calculation, as opposed to fixed-order perturbation theory
which manifests convergence problems. The corresponding theoretical
uncertainties are studied at the tau and Z mass scales. Nonperturbative
contributions extracted from the most inclusive fit are small, in agreement
with earlier determinations. Systematic effects from quark-hadron duality
violation are estimated with simple models and found to be within the quoted
systematic errors. The fit gives alpha_s(m_tau) = 0.344 +- 0.005 +- 0.007,
where the first error is experimental and the second theoretical. After
evolution to M_Z we obtain alpha_s(M_Z) = 0.1212 +- 0.0005 +- 0.0008 +- 0.0005,
where the errors are respectively experimental, theoretical and due to the
evolution. The result is in agreement with the corresponding NNNLO value
derived from essentially the Z width in the global electroweak fit. The
alpha_s(M_Z) determination from tau decays is the most precise one to date.Comment: 22 pages, 7 figure
The renormalization group inspired approaches and estimates of the tenth-order corrections to the muon anomaly in QED
We present the estimates of the five-loop QED corrections to the muon anomaly
using the scheme-invariant approaches and demonstrate that they are in good
agreement with the results of exact calculations of the corresponding
tenth-order diagrams supplemented by the additional guess about the values of
the non-calculated contributions.Comment: LATEX 15 pages, figures available upon request; preprint
CERN-TH.7518/9
- …