120 research outputs found

    Probing Reflection from Aerosols with the Near-infrared Dayside Spectrum of WASP-80b

    Get PDF
    The presence of aerosols is intimately linked to the global energy budget and the composition of a planet's atmosphere. Their ability to reflect incoming light prevents energy from being deposited into the atmosphere, and they shape the spectra of exoplanets. We observed five near-infrared secondary eclipses of WASP-80b with the Wide Field Camera 3 (WFC3) aboard the Hubble Space Telescope to provide constraints on the presence and properties of atmospheric aerosols. We detect a broadband eclipse depth of 34 ± 10 ppm for WASP-80b. We detect a higher planetary flux than expected from thermal emission alone at 1.6σ, which hints toward the presence of reflecting aerosols on this planet's dayside, indicating a geometric albedo of Ag < 0.33 at 3σ. We paired the WFC3 data with Spitzer data and explored multiple atmospheric models with and without aerosols to interpret this spectrum. Albeit consistent with a clear dayside atmosphere, we found a slight preference for near-solar metallicities and for dayside clouds over hazes. We exclude soot haze formation rates higher than 10−10.7 g cm−2s−1 and tholin formation rates higher than 10−12.0 g cm−2s−1 at 3σ. We applied the same atmospheric models to a previously published WFC3/Spitzer transmission spectrum for this planet and found weak haze formation. A single soot haze formation rate best fits both the dayside and the transmission spectra simultaneously. However, we emphasize that no models provide satisfactory fits in terms of the chi-square of both spectra simultaneously, indicating longitudinal dissimilarity in the atmosphere's aerosol composition

    The Dark World:A Tale of WASP-43b in Reflected Light with HST WFC3/UVIS

    Get PDF
    Optical, reflected light eclipse observations provide a direct probe of the exoplanet scattering properties, such as from aerosols. We present here the photometric, reflected light observations of WASP-43b using the HST WFC3/UVIS instrument with the F350LP filter (346-822nm) encompassing the entire optical band. This is the first reflected light, photometric eclipse using UVIS in scanning mode; as such we further detail our scanning extraction and analysis pipeline Arctor. Our HST WFC3/UVIS eclipse light curve for WASP-43 b derived a 3-{\sigma} upper limit of 67 ppm on the eclipse depth, which implies that WASP-43b has a very dark dayside atmosphere. With our atmospheric modeling campaign, we compared our reflected light constraints with predictions from global circulation and cloud models, benchmarked with HST and Spitzer observations of WASP-43b. We infer that we do not detect clouds on the dayside within the pressure levels probed by HST WFC3/UVIS with the F350LP filter (P > 1 bar). This is consistent with the GCM predictions based on previous WASP-43b observations. Dayside emission spectroscopy results from WASP-43b with HST and Spitzer observations are likely to not be significantly affected by contributions from cloud particles.Comment: 29 pages, 22 figures, accepted to AAS/Ap

    Nonequilibrium Evolution of Correlation Functions: A Canonical Approach

    Get PDF
    We study nonequilibrium evolution in a self-interacting quantum field theory invariant under space translation only by using a canonical approach based on the recently developed Liouville-von Neumann formalism. The method is first used to obtain the correlation functions both in and beyond the Hartree approximation, for the quantum mechanical analog of the ϕ4\phi^{4} model. The technique involves representing the Hamiltonian in a Fock basis of annihilation and creation operators. By separating it into a solvable Gaussian part involving quadratic terms and a perturbation of quartic terms, it is possible to find the improved vacuum state to any desired order. The correlation functions for the field theory are then investigated in the Hartree approximation and those beyond the Hartree approximation are obtained by finding the improved vacuum state corrected up to O(λ2){\cal O}(\lambda^2). These correlation functions take into account next-to-leading and next-to-next-to-leading order effects in the coupling constant. We also use the Heisenberg formalism to obtain the time evolution equations for the equal-time, connected correlation functions beyond the leading order. These equations are derived by including the connected 4-point functions in the hierarchy. The resulting coupled set of equations form a part of infinite hierarchy of coupled equations relating the various connected n-point functions. The connection with other approaches based on the path integral formalism is established and the physical implications of the set of equations are discussed with particular emphasis on thermalization.Comment: Revtex, 32 pages; substantial new material dealing with non-equilibrium evolution beyond Hartree approx. based on the LvN formalism, has been adde
    • …
    corecore