4,428 research outputs found
High-efficiency degenerate four wave-mixing in triply resonant nanobeam cavities
We demonstrate high-efficiency, degenerate four-wave mixing in triply
resonant Kerr photonic crystal (PhC) nanobeam cavities. Using a
combination of temporal coupled mode theory and nonlinear finite-difference
time-domain (FDTD) simulations, we study the nonlinear dynamics of resonant
four-wave mixing processes and demonstrate the possibility of observing
high-efficiency limit cycles and steady-state conversion corresponding to
% depletion of the pump light at low powers, even including
effects due to losses, self- and cross-phase modulation, and imperfect
frequency matching. Assuming operation in the telecom range, we predict close
to perfect quantum efficiencies at reasonably low 50 mW input powers in
silicon micrometer-scale cavities
Ground Water Monitoring Project for Arkansas, Phase III
This report is composed of two parts. The first part is an interpretation of the pesticide and nitrate data collected in Woodruff County based on samples collected during 1994. Because there is an indication that there were hydrological differences between 1994 and 1995, and because most of the pesticide data is from 1994, this interpretive portion is restricted to 1994 data. Six wells initially sampled in 1994 that contained pesticides had continuing contamination in re-sampling in 1994 and 1995. Part II lists a seventh well in Woodruff County that contained pesticides in February and May of 199
The Giant Flare of December 27, 2004 from SGR 1806-20
The giant flare of December 27, 2004 from SGR 1806-20 represents one of the
most extraordinary events captured in over three decades of monitoring the
gamma-ray sky. One measure of the intensity of the main peak is its effect on
X- and gamma-ray instruments. RHESSI, an instrument designed to study the
brightest solar flares, was completely saturated for ~0.5 s following the start
of the main peak. A fortuitous alignment of SGR 1806-20 near the Sun at the
time of the giant flare, however, allowed RHESSI a unique view of the giant
flare event, including the precursor, the main peak decay, and the pulsed tail.
Since RHESSI was saturated during the main peak, we augment these observations
with Wind and RHESSI particle detector data in order to reconstruct the main
peak as well. Here we present detailed spectral analysis and evolution of the
giant flare. We report the novel detection of a relatively soft fast peak just
milliseconds before the main peak, whose timescale and sizescale indicate a
magnetospheric origin. We present the novel detection of emission extending up
to 17 MeV immediately following the main peak, perhaps revealing a
highly-extended corona driven by the hyper-Eddington luminosities. The spectral
evolution and pulse evolution during the tail are presented, demonstrating
significant magnetospheric twist and evolution during this phase. Blackbody
radii are derived for every stage of the flare, which show remarkable agreement
despite the range of luminosities and temperatures covered. Finally, we place
significant upper limits on afterglow emission in the hundreds of seconds
following the giant flare.Comment: 32 pages, 14 figures, submitted to Ap
Modeling and Algorithm for Multiple Spanning Tree Provisioning in Resilient and Load Balanced Ethernet Networks
We propose a multitree based fast failover scheme for Ethernet networks. In our system, only few spanning trees are used to carry working traffic in the normal state. As a failure happens, the nodes adjacent to the failure redirect traffic to the preplanned backup VLAN trees to realize fast failure recovery. In the proposed scheme, a new leaf constraint is enforced on the backup trees. It enables the network being able to provide 100% survivability against any single link and any single node failure. Besides fast failover, we also take load balancing into consideration. We model an Ethernet network as a twolayered graph and propose an Integer Linear Programming (ILP) formulation for the problem. We further propose a heuristic algorithm to provide solutions to large networks. The simulation results show that the proposed scheme can achieve high survivability while maintaining load balancing at the same time. In addition, we have implemented the proposed scheme in an FPGA system. The experimental results show that it takes only few μsec to recover a network failure. This is far beyond the 50 msec requirement used in telecommunication networks for network protection
Maximum Penetration Height and Intrusion Speed of Weak Symmetric Plane Fountains in Linearly Stratified Fluids
The flow behavior of weak symmetric plane fountains in linearly stratified fluids is studied numerically with three-dimensional simulations over a range of the Froude ((Formula presented.)), Reynolds ((Formula presented.)), and stratification numbers (s). The two main parameters describing the fountain characterization are the dimensionless maximum fountain penetration height ((Formula presented.)) and intrusion velocity ((Formula presented.)), which differ significantly at different flow development stages. It was found that the stratification stabilizes the symmetry of the weak fountains, which makes the fountain become asymmetric at a larger (Formula presented.) value, and (Formula presented.) at the fully developed stage continues to increase as a result of the intrusion, which continually changes the ambient fluid stratification features, thus the buoyant force. The evolution of intrusion experiences three distinct stages. Both (Formula presented.) and s have effects on (Formula presented.) and (Formula presented.), with the effect of (Formula presented.) usually larger than that of s. The overall impacts of (Formula presented.) and s can be quantified in terms of (Formula presented.), with a and b varying for different parameters. With numerical results, empirical correlations are produced in terms of (Formula presented.) for each relevant parameter, which generally predict the results very well
Integrating biological knowledge into variable selection : an empirical Bayes approach with an application in cancer biology
Background:
An important question in the analysis of biochemical data is that of identifying subsets of molecular variables that may jointly influence a biological response. Statistical variable selection methods have been widely used for this purpose. In many settings, it may be important to incorporate ancillary biological information concerning the variables of interest. Pathway and network maps are one example of a source of such information. However, although ancillary information is increasingly available, it is not always clear how it should be used nor how it should be weighted in relation to primary data.
Results:
We put forward an approach in which biological knowledge is incorporated using informative prior distributions over variable subsets, with prior information selected and weighted in an automated, objective manner using an empirical Bayes formulation. We employ continuous, linear models with interaction terms and exploit biochemically-motivated sparsity constraints to permit exact inference. We show an example of priors for pathway- and network-based information and illustrate our proposed method on both synthetic response data and by an application to cancer drug response data. Comparisons are also made to alternative Bayesian and frequentist penalised-likelihood methods for incorporating network-based information.
Conclusions:
The empirical Bayes method proposed here can aid prior elicitation for Bayesian variable selection studies and help to guard against mis-specification of priors. Empirical Bayes, together with the proposed pathway-based priors, results in an approach with a competitive variable selection performance. In addition, the overall procedure is fast, deterministic, and has very few user-set parameters, yet is capable of capturing interplay between molecular players. The approach presented is general and readily applicable in any setting with multiple sources of biological prior knowledge
Ciliary neurotrophic factor (CNTF) plus soluble CNTF receptor α increases cyclooxygenase-2 expression, PGE2 release and interferon-γ-induced CD40 in murine microglia
<p>Abstract</p> <p>Background</p> <p>Ciliary neurotrophic factor (CNTF) has been regarded as a potent trophic factor for motor neurons. However, recent studies have shown that CNTF exerts effects on glial cells as well as neurons. For instance, CNTF stimulates astrocytes to secrete FGF-2 and rat microglia to secrete glial cell line-derived neurotrophic factor (GDNF), which suggest that CNTF exerts effects on astrocytes and microglia to promote motor neuron survival indirectly. As CNTF is structurally related to IL-6, which can stimulate immune functions of microglia, we hypothesized that CNTF might exert similar effects.</p> <p>Methods</p> <p>We performed 2-D and 1-D proteomic experiments with western blotting and flow cytometry to examine effects of CNTF on primary microglia derived from neonatal mouse brains.</p> <p>Results</p> <p>We show that murine microglia express CNTF receptor α (CNTFRα), which can be induced by interferon-γ (IFNγ). Whereas IL-6 activated STAT-3 and ERK phosphorylation, CNTF did not activate these pathways, nor did CNTF increase p38 MAP kinase phosphorylation. Using 2-D western blot analysis, we demonstrate that CNTF induced the dephosphorylation of a set of proteins and phosphorylation of a different set. Two proteins that were phosphorylated upon CNTF treatment were the LYN substrate-1 and β-tubulin 5. CNTF weakly stimulated microglia, whereas a stronger response was obtained by adding exogenous soluble CNTFRα (sCNTFRα) as has been observed for IL-6. When used in combination, CNTF and sCNTFRα collaborated with IFNγ to increase microglial surface expression of CD40 and this effect was quite pronounced when the microglia were differentiated towards dendritic-like cells. CNTF/sCNTFRα complex, however, failed to increase MHC class II expression beyond that induced by IFNγ. The combination of CNTF and sCNTFRα, but not CNTF alone, enhanced microglial Cox-2 protein expression and PGE<sub>2 </sub>secretion (although CNTF was 30 times less potent than LPS). Surprisingly, Cox-2 production was enhanced 2-fold, rather than being inhibited, upon addition of a gp130 blocking antibody.</p> <p>Conclusion</p> <p>Our studies indicate that CNTF can activate microglia and dendritic-like microglia similar to IL-6; however, unlike IL-6, CNTF does not stimulate the expected signaling pathways in microglia, nor does it appear to require gp130.</p
Reversible Halide-Modulated Nickel–Nickel Bond Cleavage: Metal–Metal Bonds as Design Elements for Molecular Devices
The dinickel chloride affair: In dinuclear nickel(I) complexes supported by a tris(phosphinoaryl)benzene and stabilized by metal–arene interactions, chloride addition causes reversible Ni-Ni bond cleavage that induces 180° rotation around an aryl–aryl bond (see scheme). A dinickel–chloride moiety was found to rotate around the bridging arene by a mechanism involving breaking and forming Ni-P bonds
- …