4 research outputs found

    Discovery of Potent and Selective Pyrazolopyrimidine Janus Kinase 2 Inhibitors

    No full text
    The discovery of somatic Jak2 mutations in patients with chronic myeloproliferative neoplasms has led to significant interest in discovering selective Jak2 inhibitors for use in treating these disorders. A high-throughput screening effort identified the pyrazolo­[1,5-<i>a</i>]­pyrimidine scaffold as a potent inhibitor of Jak2. Optimization of lead compounds <b>7a</b>–<b>b</b> and <b>8</b> in this chemical series for activity against Jak2, selectivity against other Jak family kinases, and good in vivo pharmacokinetic properties led to the discovery of <b>7j</b>. In a SET2 xenograft model that is dependent on Jak2 for growth, <b>7j</b> demonstrated a time-dependent knock-down of pSTAT5, a downstream target of Jak2

    GNE-886: A Potent and Selective Inhibitor of the Cat Eye Syndrome Chromosome Region Candidate 2 Bromodomain (CECR2)

    No full text
    The biological function of bromodomains, epigenetic readers of acetylated lysine residues, remains largely unknown. Herein we report our efforts to discover a potent and selective inhibitor of the bromodomain of cat eye syndrome chromosome region candidate 2 (CECR2). Screening of our internal medicinal chemistry collection led to the identification of a pyrrolopyridone chemical lead, and subsequent structure-based drug design led to a potent and selective CECR2 bromodomain inhibitor (GNE-886) suitable for use as an in vitro tool compound

    GNE-886: A Potent and Selective Inhibitor of the Cat Eye Syndrome Chromosome Region Candidate 2 Bromodomain (CECR2)

    No full text
    The biological function of bromodomains, epigenetic readers of acetylated lysine residues, remains largely unknown. Herein we report our efforts to discover a potent and selective inhibitor of the bromodomain of cat eye syndrome chromosome region candidate 2 (CECR2). Screening of our internal medicinal chemistry collection led to the identification of a pyrrolopyridone chemical lead, and subsequent structure-based drug design led to a potent and selective CECR2 bromodomain inhibitor (GNE-886) suitable for use as an in vitro tool compound

    Diving into the Water: Inducible Binding Conformations for BRD4, TAF1(2), BRD9, and CECR2 Bromodomains

    No full text
    The biological role played by non-BET bromodomains remains poorly understood, and it is therefore imperative to identify potent and highly selective inhibitors to effectively explore the biology of individual bromodomain proteins. A ligand-efficient nonselective bromodomain inhibitor was identified from a 6-methyl pyrrolopyridone fragment. Small hydrophobic substituents replacing the <i>N</i>-methyl group were designed directing toward the conserved bromodomain water pocket, and two distinct binding conformations were then observed. The substituents either directly displaced and rearranged the conserved solvent network, as in BRD4(1) and TAF1(2), or induced a narrow hydrophobic channel adjacent to the lipophilic shelf, as in BRD9 and CECR2. The preference of distinct substituents for individual bromodomains provided selectivity handles useful for future lead optimization efforts for selective BRD9, CECR2, and TAF1(2) inhibitors
    corecore