24,822 research outputs found

    Assembling and Rearranging Digital Objects in Physical Space with Tongs, a Gluegun, and a Lightsaber

    Get PDF
    We present an interface for the arrangement of objects in three-dimensional space. Physical motions of the user are mapped to interface commands through tangible props. Tongs move objects freely, a gluegun binds objects together, and a lightsaber breaks these bonds. The experimental interface is implemented on the Responsive Workbench, a semi-immersive 3D computer. We conducted a small user study comparing our approach with the 2D interface of Maya. The results suggest that our system is much faster than Maya for object assembly. Users qualitatively found the system to be far more intuitive than the monitor-based alternative

    Combinatorial Problems on HH-graphs

    Full text link
    Bir\'{o}, Hujter, and Tuza introduced the concept of HH-graphs (1992), intersection graphs of connected subgraphs of a subdivision of a graph HH. They naturally generalize many important classes of graphs, e.g., interval graphs and circular-arc graphs. We continue the study of these graph classes by considering coloring, clique, and isomorphism problems on HH-graphs. We show that for any fixed HH containing a certain 3-node, 6-edge multigraph as a minor that the clique problem is APX-hard on HH-graphs and the isomorphism problem is isomorphism-complete. We also provide positive results on HH-graphs. Namely, when HH is a cactus the clique problem can be solved in polynomial time. Also, when a graph GG has a Helly HH-representation, the clique problem can be solved in polynomial time. Finally, we observe that one can use treewidth techniques to show that both the kk-clique and list kk-coloring problems are FPT on HH-graphs. These FPT results apply more generally to treewidth-bounded graph classes where treewidth is bounded by a function of the clique number

    When almost all sets are difference dominated

    Full text link
    We investigate the relationship between the sizes of the sum and difference sets attached to a subset of {0,1,...,N}, chosen randomly according to a binomial model with parameter p(N), with N^{-1} = o(p(N)). We show that the random subset is almost surely difference dominated, as N --> oo, for any choice of p(N) tending to zero, thus confirming a conjecture of Martin and O'Bryant. The proofs use recent strong concentration results. Furthermore, we exhibit a threshold phenomenon regarding the ratio of the size of the difference- to the sumset. If p(N) = o(N^{-1/2}) then almost all sums and differences in the random subset are almost surely distinct, and in particular the difference set is almost surely about twice as large as the sumset. If N^{-1/2} = o(p(N)) then both the sum and difference sets almost surely have size (2N+1) - O(p(N)^{-2}), and so the ratio in question is almost surely very close to one. If p(N) = c N^{-1/2} then as c increases from zero to infinity (i.e., as the threshold is crossed), the same ratio almost surely decreases continuously from two to one according to an explicitly given function of c. We also extend our results to the comparison of the generalized difference sets attached to an arbitrary pair of binary linear forms. For certain pairs of forms f and g, we show that there in fact exists a sharp threshold at c_{f,g} N^{-1/2}, for some computable constant c_{f,g}, such that one form almost surely dominates below the threshold, and the other almost surely above it. The heart of our approach involves using different tools to obtain strong concentration of the sizes of the sum and difference sets about their mean values, for various ranges of the parameter p.Comment: Version 2.1. 24 pages. Fixed a few typos, updated reference
    corecore