49 research outputs found

    Generation of bovine transgenics using somatic cell nuclear transfer

    Get PDF
    The ability to produce transgenic animals through the introduction of exogenous DNA has existed for many years. However, past methods available to generate transgenic animals, such as pronuclear microinjection or the use of embryonic stem cells, have either been inefficient or not available in all animals, bovine included. More recently somatic cell nuclear transfer has provided a method to create transgenic animals that overcomes many deficiencies present in other methods. This review summarizes the benefits of using somatic cell nuclear transfer to create bovine transgenics as well as the possible opportunities this method creates for the future

    Development of porcine embryos reconstituted with somatic cells and enucleated metaphase I and II oocytes matured in a protein-free medium

    Get PDF
    BACKGROUND: Many cloned animals have been created by transfer of differentiated cells at G0/G1 or M phase of the cell cycle into enucleated M II oocytes having high maturation/meiosis/mitosis-promoting factor activity. Because maturation/meiosis/mitosis-promoting factor activity during oocyte maturation is maximal at both M I and M II, M I oocytes may reprogram differentiated cell nuclei as well. The present study was conducted to examine the developmental ability in vitro of porcine embryos reconstructed by transferring somatic cells (ear fibroblasts) into enucleated M I or M II oocytes. RESULTS: Analysis of the cell cycle stages revealed that 91.2 ± 0.2% of confluent cells were at the G0/G1 phase and 54.1 ± 4.4% of nocodazole-treated cells were at the G2/M phase, respectively. At 6 h after activation, nuclear swelling was observed in 50.0-88.9% and 34.4-39.5% of embryos reconstituted with confluent cells and nocodazole-treated cells regardless of the recipient oocytes, respectively. The incidence of both a swollen nucleus and polar body was low (6.3-10.5%) for all nocodazole-treated donor cell regardless of the recipient oocyte. When embryos reconstituted with confluent cells and M I oocytes were cultured, 2 (1.5%) blastocysts were obtained and this was significantly (P < 0.05) lower than that (7.6%) of embryos produced by transferring confluent cells into M II oocytes. No reconstructed embryos developed to the blastocyst stage when nocodazole-treated cells were used as donors. CONCLUSIONS: Porcine M I oocytes have a potential to develop into blastocysts after nuclear transfer of somatic cells

    Differing Lectin Binding Profiles among Human Embryonic Stem Cells and Derivatives Aid in the Isolation of Neural Progenitor Cells

    Get PDF
    Human embryonic stem cells (hESCs) and their differentiated progeny allow for investigation of important changes/events during normal embryonic development. Currently most of the research is focused on proteinacous changes occurring as a result of differentiation of stem cells and little is known about changes in cell surface glycosylation patterns. Identification of cell lineage specific glycans can help in understanding their role in maintenance, proliferation and differentiation. Furthermore, these glycans can serve as markers for isolation of homogenous populations of cells. Using a panel of eight biotinylated lectins, the glycan expression of hESCs, hESCs-derived human neural progenitors (hNP) cells, and hESCs-derived mesenchymal progenitor (hMP) cells was investigated. Our goal was to identify glycans that are unique for hNP cells and use the corresponding lectins for cell isolation. Flow cytometry and immunocytochemistry were used to determine expression and localization of glycans, respectively, in each cell type. These results show that the glycan expression changes upon differentiation of hESCs and is different for neural and mesenchymal lineage. For example, binding of PHA-L lectin is low in hESCs (14±4.4%) but significantly higher in differentiated hNP cells (99±0.4%) and hMP cells (90±3%). Three lectins: VVA, DBA and LTL have low binding in hESCs and hMP cells, but significantly higher binding in hNP cells. Finally, VVA lectin binding was used to isolate hNP cells from a mixed population of hESCs, hNP cells and hMP cells. This is the first report that compares glycan expression across these human stem cell lineages and identifies significant differences. Also, this is the first study that uses VVA lectin for isolation for human neural progenitor cells

    Inhibition of DNA methyltransferases and histone deacetylases induces astrocytic differentiation of neural progenitors

    Get PDF
    AbstractUnderstanding how to specify rapid differentiation of human neural progenitor towards enriched non-transformed human astrocyte progenitors will provide a critical cell source to further our understanding of how astrocytes play a pivotal role in neural function and development. Human neural progenitors derived from pluripotent embryonic stem cells and propagated in adherent serum-free cultures provide a fate restricted renewable source for quick production of neural cells; however, such cells are highly refractive to astrocytogenesis and show a strong neurogenic bias, similar to neural progenitors from the early embryonic central nervous system (CNS). We found that several astrocytic genes are hypermethylated in such progenitors potentially preventing generation of astrocytes and leading to the proneuronal fate of these progenitors. However, epigenetic modification by Azacytidine (Aza-C) and Trichostatin A (TSA), with concomitant signaling from BMP2 and LIF in neural progenitor cultures shifts this bias, leading to expression of astrocytic markers as early as 5days of differentiation, with near complete suppression of neuronal differentiation. The resultant cells express major astrocytic markers, are amenable to co-culture with neurons, can be propagated as astrocyte progenitors and are cryopreservable. Although previous reports have generated astrocytes from pluripotent cells, the differentiation required extensive culture or selection based on cell surface antigens. The development of a label free and rapid differentiation process will expedite future derivation of astrocytes from various sources pluripotent cells including, but not limited to, human astrocytes associated with various neurological diseases

    Rapid Heterotrophic Ossification with Cryopreserved Poly(ethylene glycol-) Microencapsulated BMP2-Expressing MSCs

    Get PDF
    Autologous bone grafting is the most effective treatment for long-bone nonunions, but it poses considerable risks to donors, necessitating the development of alternative therapeutics. Poly(ethylene glycol) (PEG) microencapsulation and BMP2 transgene delivery are being developed together to induce rapid bone formation. However, methods to make these treatments available for clinical applications are presently lacking. In this study we used mesenchymal stem cells (MSCs) due to their ease of harvest, replication potential, and immunomodulatory capabilities. MSCs were from sheep and pig due to their appeal as large animal models for bone nonunion. We demonstrated that cryopreservation of these microencapsulated MSCs did not affect their cell viability, adenoviral BMP2 production, or ability to initiate bone formation. Additionally, microspheres showed no appreciable damage from cryopreservation when examined with light and electron microscopy. These results validate the use of cryopreservation in preserving the viability and functionality of PEG-encapsulated BMP2-transduced MSCs

    Development and characterization of a Yucatan miniature biomedical pig permanent middle cerebral artery occlusion stroke model

    Get PDF
    BACKGROUND: Efforts to develop stroke treatments have met with limited success despite an intense need to produce novel treatments. The failed translation of many of these therapies in clinical trials has lead to a close examination of the therapeutic development process. One of the major factors believed to be limiting effective screening of these treatments is the absence of an animal model more predictive of human responses to treatments. The pig may potentially fill this gap with a gyrencephalic brain that is larger in size with a more similar gray-white matter composition to humans than traditional stroke animal models. In this study we develop and characterize a novel pig middle cerebral artery occlusion (MCAO) ischemic stroke model. METHODS: Eleven male pigs underwent MCAO surgery with the first 4 landrace pigs utilized to optimize stroke procedure and 7 additional Yucatan stroked pigs studied over a 90 day period. MRI analysis was done at 24 hrs and 90 days and included T2w, T2w FLAIR, T1w FLAIR and DWI sequences and associated ADC maps. Pigs were sacrificed at 90 days and underwent gross and microscopic histological evaluation. Significance in quantitative changes was determined by two-way analysis of variance and post-hoc Tukey’s Pair-Wise comparisons. RESULTS: MRI analysis of animals that underwent MCAO surgery at 24 hrs had hyperintense regions in T2w and DWI images with corresponding ADC maps having hypointense regions indicating cytotoxic edema consistent with an ischemic stroke. At 90 days, region of interest analysis of T1 FLAIR and ADC maps had an average lesion size of 59.17 cc, a loss of 8% brain matter. Histological examination of pig brains showed atrophy and loss of tissue, consistent with MRI, as well as glial scar formation and macrophage infiltration. CONCLUSIONS: The MCAO procedure led to significant and consistent strokes with high survivability. These results suggest that the pig model is potentially a robust system for the study of stroke pathophysiology and potential diagnostics and therapeutics
    corecore