204 research outputs found

    Asuka 12325: A new depleted shergottite

    Get PDF
    The Tenth Symposium on Polar Science/Special session: [OA] Antarctic meteorites, Thur. 5 Dec. / 3F Multipurpose conference room, National Institute of Polar Researc

    Reconstructing seasonality through stable-isotope and trace-element analyses of the Proserpine stalagmite, Han-sur-Lesse cave, Belgium : indications for climate-driven changes during the last 400 years

    Get PDF
    Fast-growing speleothems allow for the reconstruction of palaeoclimate down to a seasonal scale. Additionally, annual lamination in some of these speleothems yields highly accurate age models for these palaeoclimate records, making these speleothems valuable archives for terrestrial climate. In this study, an annually laminated stalagmite from the Han-sur-Lesse cave (Belgium) is used to study the expression of the seasonal cycle in northwestern Europe during the Little Ice Age. More specifically, two historical 12-year-long growth periods (ca. 1593-1605 CE and 1635-1646 CE) and one modern growth period (1960-2010 CE) are analysed on a sub-annual scale for their stable-isotope ratios (delta C-13 and delta O-18) and trace-element (Mg, Sr, Ba, Zn, Y, Pb, U) contents. Seasonal variability in these proxies is confirmed with frequency analysis. Zn, Y and Pb show distinct annual peaks in all three investigated periods related to annual flushing of the soil during winter. A strong seasonal in-phase relationship between Mg, Sr and Ba in the modern growth period reflects a substantial influence of enhanced prior calcite precipitation (PCP). In particular, PCP occurs during summers when recharge of the epikarst is low. This is also evidenced by earlier observations of increased delta C-13 values during summer. In the 17th century intervals, there is a distinct antiphase relationship between Mg, Sr and Ba, suggesting that processes other than PCP, i.e. varying degrees of incongruent dissolution of dolomite, eventually related to changes in soil activity and/or land-use change are more dominant. The processes controlling seasonal variations in Mg, Sr and Ba in the speleothem appear to change between the 17th century and 1960-2010 CE. The Zn, Y, Pb, and U concentration profiles; stable-isotope ratios; and morphology of the speleothem laminae all point towards increased seasonal amplitude in cave hydrology. Higher seasonal peaks in soil-derived elements (e.g. Zn and Y) and lower concentrations of host-rock-derived elements (e.g. Mg, Sr, Ba) point towards lower residence times in the epikarst and higher flushing rates during the 17th century. These observations reflect an increase in water excess above the cave and recharge of the epikarst, due to a combination of lower summer temperatures and increased winter precipitation during the 17th century. This study indicates that the transfer function controlling Mg, Sr and Ba seasonal variability varies over time. Which process is dominant - either PCP, soil activity or dolomite dissolution - is clearly climate driven and can itself be used as a palaeoenvironment proxy

    Stable isotope ratios and trace elements in modern mammal tooth enamel

    Get PDF
    Bioapatite from mammal tooth enamel is a popular biomineral used in the reconstruction of palaeoenvironment and palaeodiet. It records information about the animal’s environment and diet on a sub-annual scale and is proven to be highly resistant to diagenesis, allowing the preservation of its original chemical composition through archaeological and geological timescales. In this study, stable carbon and oxygen isotope analysis are used as a stepping stone to investigate the use of other chemical proxies for the reconstruction of environment and diet from mammal teeth. Concentration profiles of trace element distributions (measured with μXRF and cross-validated with Laser Ablation ICP-MS) and stable isotope ratios (13Cap, 18Oc & 18Op) are combined to test the reliability of trace element profiles from mammal teeth in recording seasonal changes in environment and diet of the animal. A method is presented that links the various geochemical records within a tooth sequence using mineralization sequences and oxygen isotope seasonality. This way, a 3 year trace element and stable isotope record from horse tooth enamel is created showing seasonal variation in trace elements and isotope ratios linked to changes in climatic conditions and diet through the animal’s lifetime. This study shows how an entire new set of trace element proxies, that can be measured quickly and non-destructively, may yield information on palaeoenvironment and palaeodiet. These trace element measurements yield information from precious archaeological samples that could otherwise be obtained solely through destructive sampling. The versatility of the μXRF and LA- ICP-MS methods opens up a wide range of applications for trace element analysis in archaeology

    Oxygen isotopic compositions of fresh rooftop micrometeorites from the Budel collection — Insights into the contemporary cosmic dust flux

    Get PDF
    Cosmic dust particles originate from a wide variety of solar system and interstellar objects, including sources not identified among meteorite collections. Particles that survive atmospheric entry are retrieved on the Earth's surface as micrometeorites. The recovery of these micrometeorites has recently advanced to rooftop sites. Here, we present the results of an extensive isotopic study on this type of rooftop micrometeorite from the Budel collection, the Netherlands, accreted to the Earth between October 31, 2018 and June 16, 2021. The triple oxygen isotopic compositions of 80 silica‐dominated cosmic spherules (CSs) with diameters ranging between 105 and 515 μm are obtained relying on 213 in situ spot analyses determined using ion microprobe. Our analyzed population spans a large range of isotopic compositions and is dominated by carbonaceous chondritic sources. In situ measurements on several CSs support a possible continuum between 16O‐rich and 16O‐poor compositions following the CM mixing line, showing that 16O‐poor CSs may be genetically related to aqueously altered carbonaceous chondrites. We demonstrate that weathering in the terrestrial environment has negligible effects on the isotopic compositions of the studied CSs and attempt to quantify the effects of kinetic mass‐dependent fractionation and admixture of terrestrial oxygen during atmospheric entry. The results further corroborate previously suggested relations between CS texture and the duration and intensity of the heating pulse experienced during atmospheric deceleration. Finally, the young and well‐constrained terrestrial age of the collection provides insights into the most recent flux of cosmic dust. Our results indicate no major recent changes in the global flux compared with collections sampled over thousand‐ to million‐year time scales and demonstrate that 16O‐poor material is still represented in the modern‐day cosmic dust flux at a relative abundance of ~13%–15%. As such, rooftop micrometeorites represent a valuable reservoir to study the characteristics of the contemporary cosmic dust flux

    Report of the JARE-54 and BELARE 2012-2013 joint expedition to collect meteorites on the Nansen Ice Field, Antarctica

    Get PDF
    第54次日本南極地域観測隊員4名とベルギー南極観測隊員6 名の合計10名から構成される隕石探査隊は,2012年12月から2013年2月まで,セール・ロンダーネ山地南部に広がるナンセン氷原(南緯72°30′-73°,東経23°-25°,標高約2900-3000m)において隕石探査を実施した.ナンセン氷原には2012年12月26日から2013年2月2日まで39日間滞在した.今回の探査域は第29次日本南極地域観測隊以降探査が行われていない.探査の結果,採集した隕石の総数は424個,合計重量は約70kgであった.隕石発見地点は携帯GPSに記録されたので,探査域における隕石の分布が明確になった.これは隕石集積機構解明のための基礎データだけでなく,今後の探査計画に活用できる.本稿は主に日本隊による準備期間を含む実施報告書である.This paper reports on a joint expedition (JARE-54 and BELARE 2012-2013) that conducted a search for meteorites on the Nansen Ice Field, Antarctica, in an area south of the Sor Rondane Mountains (72°30′-73°S, 23°-25°E; elevation 2900-3000 m). The expedition took place over a period of 39 days during the austral summer, between 26 December 2012 and 2 February 2013. The team consisted of ten members: three researchers and one field assistant from the 54th Japanese Antarctic Research Expedition (JARE-54), and five researchers and one field assistant from the Belgian Antarctic Expedition (BELARE) 2012-2013. Previously, this area had only been searched by JARE-29. The team collected 424 meteorites, which had a total weight of about 70 kg. The search tracks of the ten members of the expedition were recorded using hand-held GPS units, and this allowed the distribution of meteorites within the searched area to be mapped. The resultant data will be useful for planning future expeditions and can be used to clarify the meteorite concentration mechanism on the ice field. This paper focuses on the activities of JARE-54 during the joint expedition

    Investigating the provenance of Egyptian blue pigments in ancient Roman polychromy

    Get PDF
    Egyptian blue is a copper-based blue pigment that was widely used across the Mediterranean from ca. 3300 BC up to late antiquity and even later. For this case study, we analyzed the provenance of Egyptian blue from a Campana relief from the collection of the Ny Carlsberg Glyptotek, Denmark. Campana reliefs are terracotta plaques, which were named after the Italian collector Gampietro Campana, who published the first collection in 1851. These mould-made plaques were used as ornaments in central Italy from ca. 60 BC to 50 AD – a time when Egyptian blue production is attested at several sites in the Bay of Naples, Italy. The provenance of copper raw materials that were used for producing this pigment could provide clues about the distribution of production centers and trade contacts. A previous investigation of the provenance of a single bulk Egyptian blue sample of this artefact by Rodler et al. (2017) indicated a possible long-distance transport of (Iberian) copper ore or mixing of distant (Iberian) and Italian copper. Our new data are based on the lead isotope analysis of four individual Egyptian blue samples. The refined sampling resolution emphasizes the Italian South-Eastern Alps as the most likely source area of copper raw materials. This copper could have been processed in local Egyptian blue production workshops or brought to the contemporary Egyptian blue production hub in the Bay of Naples and transported from there to the workshop where the artefact was painted

    Characterization of achondritic cosmic spherules from the Widerøefjellet micrometeorite collection (Sør Rondane Mountains, East Antarctica)

    Get PDF
    Achondritic micrometeorites represent one of the rarest (ca. 0.5–2.1%) particle types among Antarctic micrometeorite collections. Here, we present major, trace element and oxygen isotope compositions on five vitreous, achondritic cosmic spherules (341–526 µm in size) recovered from the Widerøefjellet sedimentary trap in the Sør Rondane Mountains (SRMs) of East Antarctica. We also present the first iron isotope data for four of these achondritic cosmic spherules. The particles were initially identified based on the atomic concentrations of Fe-Mg-Mn and their distribution in Fe/Mg versus Fe/Mn space, spanning a relatively wide range in Fe/Mg ratios (ca. 0.48–1.72). The Fe/Mn ratios cover a more restricted range (22.4–31.7), comparable to or slightly below the values measured for howardite-eucrite-diogenite (HED) and martian meteorites. One particle (WF1801-AC3) displays an elevated Fe/Mn ratio of ∼78, comparable to the values determined for lunar rocks. The negative correlation observed between the CaO + Al2O3 contents and the Fe/Si ratios of achondritic spherules reflects both the mineralogy of the precursor materials, as well as the extent of volatilization experienced during atmospheric entry heating. This trend suggests that the primary mineralogy of precursor materials may have been compositionally similar to basaltic achondrites. Based on their distribution in Ca/Si versus Al/Si space, we argue that the majority of achondritic cosmic spherules predominantly sample pyroxene- and/or plagioclase-rich (i.e., basaltic) precursor bodies. Such precursor mineralogy is also inferred from their rare earth element (REE) patterns, which show resemblances to fine-grained basaltic eucrites or Type 1 achondritic spherules (n = 3 – av. REEN = 11.2–15.5, (La/Yb)N = 0.93–1.21), pigeonite-rich equilibrated eucrite precursors or Type 2 achondritic spherules (n = 1 – av. REEN = 27.9, (La/Yb)N = 0.10), and possibly Ca-phosphates from (primitive) achondritic bodies (n = 1 – av. REEN = 58.8, (La/Yb)N = 1.59). This is clearly demonstrated for particle WF1801AC-1, which was likely inherited from a fine-grained eucritic precursor body. The pre-atmospheric oxygen isotope composition was reconstructed through compensation of mass-dependent fractionation processes as well as mixing with atmospheric oxygen, using iron isotope data. Two particles (WF1801AC-2, WF1801-AC4) display corrected oxygen isotope compositions (δ18O = 3.7–4.4‰) largely consistent with HED meteorites and may thus originate from HED-like parent bodies. The corrected oxygen isotope compositions (δ18O = 12.6–12.8‰) of the remaining particles (WF1801-AC3, WF1801-AC5) do not correspond to known meteorite fields and may represent two distinct types of unknown achondritic parent bodies or residual atmospheric entry effects. Finally, the abundance (ca. 0.5%) of achondritic cosmic spherules within the Widerøefjellet sedimentary trap is comparable to that observed in the South Pole Water Well (SPWW – ca. 0.5%), Novaya Zemlya glacier (ca. 0.45%) and Transantarctic Mountain (TAM) (ca. 2.1%) collections, confirming their overall rarity in micrometeorite collections. Unambiguous evidence for micrometeorites from the Moon or Mars remains absent from collections to date
    corecore