86 research outputs found
Plasmacytoid Dendritic Cell Infection and Sensing Capacity during Pathogenic and Nonpathogenic Simian Immunodeficiency Virus Infection.
International audienceHuman immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques (MAC) lead to chronic inflammation and AIDS. Natural hosts, such as African green monkeys (AGM) and sooty mangabeys (SM), are protected against SIV-induced chronic inflammation and AIDS. Here, we report that AGM plasmacytoid dendritic cells (pDC) express extremely low levels of CD4, unlike MAC and human pDC. Despite this, AGM pDC efficiently sensed SIVagm, but not heterologous HIV/SIV isolates, indicating a virus-host adaptation. Moreover, both AGM and SM pDC were found to be, in contrast to MAC pDC, predominantly negative for CCR5. Despite such limited CD4 and CCR5 expression, lymphoid tissue pDC were infected to a degree similar to that seen with CD4(+) T cells in both MAC and AGM. Altogether, our finding of efficient pDC infection by SIV in vivo identifies pDC as a potential viral reservoir in lymphoid tissues. We discovered low expression of CD4 on AGM pDC, which did not preclude efficient sensing of host-adapted viruses. Therefore, pDC infection and efficient sensing are not prerequisites for chronic inflammation. The high level of pDC infection by SIVagm suggests that if CCR5 paucity on immune cells is important for nonpathogenesis of natural hosts, it is possibly not due to its role as a coreceptor. The ability of certain key immune cell subsets to resist infection might contribute to the asymptomatic nature of simian immunodeficiency virus (SIV) infection in its natural hosts, such as African green monkeys (AGM) and sooty mangabeys (SM). This relative resistance to infection has been correlated with reduced expression of CD4 and/or CCR5. We show that plasmacytoid dendritic cells (pDC) of natural hosts display reduced CD4 and/or CCR5 expression, unlike macaque pDC. Surprisingly, this did not protect AGM pDC, as infection levels were similar to those found in MAC pDC. Furthermore, we show that AGM pDC did not consistently produce type I interferon (IFN-I) upon heterologous SIVmac/HIV type 1 (HIV-1) encounter, while they sensed autologous SIVagm isolates. Pseudotyping SIVmac/HIV-1 overcame this deficiency, suggesting that reduced uptake of heterologous viral strains underlays this lack of sensing. The distinct IFN-I responses depending on host species and HIV/SIV isolates reveal the host/virus species specificity of pDC sensing
A New Rhesus Macaque Assembly and Annotation for Next-Generation Sequencing Analyses
BACKGROUND: The rhesus macaque (Macaca mulatta) is a key species for advancing biomedical research. Like all draft mammalian genomes, the draft rhesus assembly (rheMac2) has gaps, sequencing errors and misassemblies that have prevented automated annotation pipelines from functioning correctly. Another rhesus macaque assembly, CR_1.0, is also available but is substantially more fragmented than rheMac2 with smaller contigs and scaffolds. Annotations for these two assemblies are limited in completeness and accuracy. High quality assembly and annotation files are required for a wide range of studies including expression, genetic and evolutionary analyses.
RESULTS: We report a new de novo assembly of the rhesus macaque genome (MacaM) that incorporates both the original Sanger sequences used to assemble rheMac2 and new Illumina sequences from the same animal. MacaM has a weighted average (N50) contig size of 64 kilobases, more than twice the size of the rheMac2 assembly and almost five times the size of the CR_1.0 assembly. The MacaM chromosome assembly incorporates information from previously unutilized mapping data and preliminary annotation of scaffolds. Independent assessment of the assemblies using Ion Torrent read alignments indicates that MacaM is more complete and accurate than rheMac2 and CR_1.0. We assembled messenger RNA sequences from several rhesus tissues into transcripts which allowed us to identify a total of 11,712 complete proteins representing 9,524 distinct genes. Using a combination of our assembled rhesus macaque transcripts and human transcripts, we annotated 18,757 transcripts and 16,050 genes with complete coding sequences in the MacaM assembly. Further, we demonstrate that the new annotations provide greatly improved accuracy as compared to the current annotations of rheMac2. Finally, we show that the MacaM genome provides an accurate resource for alignment of reads produced by RNA sequence expression studies.
CONCLUSIONS: The MacaM assembly and annotation files provide a substantially more complete and accurate representation of the rhesus macaque genome than rheMac2 or CR_1.0 and will serve as an important resource for investigators conducting next-generation sequencing studies with nonhuman primates.
REVIEWERS: This article was reviewed by Dr. Lutz Walter, Dr. Soojin Yi and Dr. Kateryna Makova
Sooty Mangabey Genome Sequence Provides Insight into AIDS Resistance in a Natural SIV Host
In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3-4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS
Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo
Long-lasting, latently infected resting CD4+ T cells are the greatest obstacle to obtaining a cure for HIV infection, as these cells can persist despite decades of treatment with antiretroviral therapy (ART). Estimates indicate that more than 70 years of continuous, fully suppressive ART are needed to eliminate the HIV reservoir1. Alternatively, induction of HIV from its latent state could accelerate the decrease in the reservoir, thus reducing the time to eradication. Previous attempts to reactivate latent HIV in preclinical animal models and in clinical trials have measured HIV induction in the peripheral blood with minimal focus on tissue reservoirs and have had limited effect2–9. Here we show that activation of the non-canonical NF-κB signalling pathway by AZD5582 results in the induction of HIV and SIV RNA expression in the blood and tissues of ART-suppressed bone-marrow–liver–thymus (BLT) humanized mice and rhesus macaques infected with HIV and SIV, respectively. Analysis of resting CD4+ T cells from tissues after AZD5582 treatment revealed increased SIV RNA expression in the lymph nodes of macaques and robust induction of HIV in almost all tissues analysed in humanized mice, including the lymph nodes, thymus, bone marrow, liver and lung. This promising approach to latency reversal—in combination with appropriate tools for systemic clearance of persistent HIV infection—greatly increases opportunities for HIV eradication
Robust and persistent reactivation of SIV and HIV by N-803 and depletion of CD8+ cells
Human immunodeficiency virus (HIV) persists indefinitely in individuals with HIV who receive antiretroviral therapy (ART) owing to a reservoir of latently infected cells that contain replication-competent virus1–4. Here, to better understand the mechanisms responsible for latency persistence and reversal, we used the interleukin-15 superagonist N-803 in conjunction with the depletion of CD8+ lymphocytes in ART-treated macaques infected with simian immunodeficiency virus (SIV). Although N-803 alone did not reactivate virus production, its administration after the depletion of CD8+ lymphocytes in conjunction with ART treatment induced robust and persistent reactivation of the virus in vivo. We found viraemia of more than 60 copies per ml in all macaques (n = 14; 100%) and in 41 out of a total of 56 samples (73.2%) that were collected each week after N-803 administration. Notably, concordant results were obtained in ART-treated HIV-infected humanized mice. In addition, we observed that co-culture with CD8+ T cells blocked the in vitro latency-reversing effect of N-803 on primary human CD4+ T cells that were latently infected with HIV. These results advance our understanding of the mechanisms responsible for latency reversal and lentivirus reactivation during ART-suppressed infection
Lymph Node Cellular and Viral Dynamics in Natural Hosts and Impact for HIV Cure Strategies
Combined antiretroviral therapies (cARTs) efficiently control HIV replication leading to undetectable viremia and drastic increases in lifespan of people living with HIV. However, cART does not cure HIV infection as virus persists in cellular and anatomical reservoirs, from which the virus generally rebounds soon after cART cessation. One major anatomical reservoir are lymph node (LN) follicles, where HIV persists through replication in follicular helper T cells and is also trapped by follicular dendritic cells. Natural hosts of SIV, such as African green monkeys and sooty mangabeys, generally do not progress to disease although displaying persistently high viremia. Strikingly, these hosts mount a strong control of viral replication in LN follicles shortly after peak viremia that lasts throughout infection. Herein, we discuss the potential interplay between viral control in LNs and the resolution of inflammation, which is characteristic for natural hosts. We furthermore detail the differences that exist between non-pathogenic SIV infection in natural hosts and pathogenic HIV/SIV infection in humans and macaques regarding virus target cells and replication dynamics in LNs. Several mechanisms have been proposed to be implicated in the strong control of viral replication in natural host’s LNs, such as NK cell-mediated control, that will be reviewed here, together with lessons and limitations of in vivo cell depletion studies that have been performed in natural hosts. Finally, we discuss the impact that these insights on viral dynamics and host responses in LNs of natural hosts have for the development of strategies toward HIV cure
Systems biology of natural simian immunodeficiency virus infections
International audiencePurpose of review A key factor driving AIDS-associated immunopathogenesis is chronic immune activation. Simian immunodeficiency virus (SIV) infection of African natural host species leads to high viremia, but low immune activation and absence of disease. Considerable progress in our understanding of pathological immune activation has come from comparative studies of SIV infection in pathogenic Asian macaque species and natural hosts. The focus of this review is to highlight recent work on the natural host model using high-throughput genomics. Recent findings Several groups have independently conducted microarray gene expression profiling comparing in-vivo SIV infection in natural and non-natural hosts. A consistent finding between these studies is that both pathogenic SIV infection of macaques and nonpathogenic infections of natural hosts have strong induction of interferon-stimulated genes (ISGs) early on, but a key difference was that natural hosts down-modulated the interferon response rapidly after acute infection. The development of new genome-based resources for further study of the natural host model is discussed. Summary Initial efforts using high-throughput biology to study SIV infection of natural hosts have effectively identified the ability of natural hosts to resolve interferon responses and immune activation. Further application of `omic-based technologies coupled with integrative systems-based analysis should continue to yield progress
PD-1 blockade during chronic SIV infection reduces hyperimmune activation and microbial translocation in rhesus macaques
Hyperimmune activation is a strong predictor of disease progression during pathogenic immunodeficiency virus infections and is mediated in part by sustained type I IFN signaling in response to adventitious microbial infection. The immune inhibitory receptor programmed death–1 (PD-1) regulates functional exhaustion of virus-specific CD8+ T cells during chronic infections, and in vivo PD-1 blockade has been shown to improve viral control of SIV. Here, we show that PD-1 blockade during chronic SIV infection markedly reduced the expression of transcripts associated with type I IFN signaling in the blood and colorectal tissue of rhesus macaques (RMs). The effect of PD-1 blockade on type I IFN signaling was durable and persisted even under conditions of high viremia. Reduced type I IFN signaling was associated with enhanced expression of some of the junction-associated genes in colorectal tissue and with a profound decrease in plasma LPS levels, suggesting a possible repair of gut-associated junctions and decreased microbial translocation into the blood. PD-1 blockade enhanced immunity to gut-resident pathogenic bacteria, control of gut-associated opportunistic infections, and survival of SIV-infected RMs. Our results suggest PD-1 blockade as a potential novel therapeutic approach to enhance combination antiretroviral therapy by suppressing hyperimmune activation in HIV-infected individuals
CCR2 signaling restricts SARS-CoV-2 infection
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a historic pandemic of respiratory disease (coronavirus disease 2019 [COVID-19]), and current evidence suggests that severe disease is associated with dysregulated immunity within the respiratory tract. However, the innate immune mechanisms that mediate protection during COVID-19 are not well defined. Here, we characterize a mouse model of SARS-CoV-2 infection and find that early CCR2 signaling restricts the viral burden in the lung. We find that a recently developed mouse-adapted SARS-CoV-2 (MA-SARS-CoV-2) strain as well as the emerging B.1.351 variant trigger an inflammatory response in the lung characterized by the expression of proinflammatory cytokines and interferon-stimulated genes. Using intravital antibody labeling, we demonstrate that MA-SARS-CoV-2 infection leads to increases in circulating monocytes and an influx of CD4
- …