128 research outputs found

    Spectroscopy of Giant Stars in the Pyxis Globular Cluster

    Get PDF
    The Pyxis globular cluster is a recently discovered globular cluster that lies in the outer halo (R_{gc} ~ 40 kpc) of the Milky Way. Pyxis lies along one of the proposed orbital planes of the Large Magellanic Cloud (LMC), and it has been proposed to be a detached LMC globular cluster captured by the Milky Way. We present the first measurement of the radial velocity of the Pyxis globular cluster based on spectra of six Pyxis giant stars. The mean heliocentric radial velocity is ~ 36 km/sec, and the corresponding velocity of Pyxis with respect to a stationary observer at the position of the Sun is ~ -191 km/sec. This radial velocity is a large enough fraction of the cluster's expected total space velocity, assuming that it is bound to the Milky Way, that it allows strict limits to be placed on the range of permissible transverse velocities that Pyxis could have in the case that it still shares or nearly shares an orbital pole with the LMC. We can rule out that Pyxis is on a near circular orbit if it is Magellanic debris, but we cannot rule out an eccentric orbit associated with the LMC. We have calculated the range of allowed proper motions for the Pyxis globular cluster that result in the cluster having an orbital pole within 15 degrees of the present orbital pole of the LMC and that are consistent with our measured radial velocity, but verification of the tidal capture hypothesis must await proper motion measurement from the Space Interferometry Mission or HST. A spectroscopic metallicity estimate of [Fe/H] = -1.4 +/- 0.1 is determined for Pyxis from several spectra of its brightest giant; this is consistent with photometric determinations of the cluster metallicity from isochrone fitting.Comment: 22 pages, 5 figures, aaspp4 style, accepted for publication in October, 2000 issue of the PAS

    Interleukin-33 contributes to both M1 and M2 chemokine marker expression in human macrophages

    Get PDF
    Abstract Background Interleukin-33 is a member of the IL-1 cytokine family whose functions are mediated and modulated by the ST2 receptor. IL-33-ST2 expression and interactions have been explored in mouse macrophages but little is known about the effect of IL-33 on human macrophages. The expression of ST2 transcript and protein levels, and IL-33-mediated effects on M1 (i.e. classical activation) and M2 (i.e. alternative activation) chemokine marker expression in human bone marrow-derived macrophages were examined. Results Human macrophages constitutively expressed the membrane-associated (i.e. ST2L) and the soluble (i.e. sST2) ST2 receptors. M2 (IL-4 + IL-13) skewing stimuli markedly increased the expression of ST2L, but neither polarizing cytokine treatment promoted the release of sST2 from these cells. When added to naïve macrophages alone, IL-33 directly enhanced the expression of CCL3. In combination with LPS, IL-33 blocked the expression of the M2 chemokine marker CCL18, but did not alter CCL3 expression in these naive cells. The addition of IL-33 to M1 macrophages markedly increased the expression of CCL18 above that detected in untreated M1 macrophages. Similarly, alternatively activated human macrophages treated with IL-33 exhibited enhanced expression of CCL18 and the M2 marker mannose receptor above that detected in M2 macrophages alone. Conclusions Together, these data suggest that primary responses to IL-33 in bone marrow derived human macrophages favors M1 chemokine generation while its addition to polarized human macrophages promotes or amplifies M2 chemokine expression.http://deepblue.lib.umich.edu/bitstream/2027.42/78250/1/1471-2172-11-52.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78250/2/1471-2172-11-52.pdfPeer Reviewe

    Absolute Proper Motion of the Fornax Dwarf Spheroidal Galaxy from Photographic and HST WFPC2 Data

    Full text link
    We have measured the absolute proper motion of the Fornax dwarf spheroidal galaxy from a combination of photographic plate material and HST WFPC2 data that provide a time baseline of up to 50 years. The extragalactic reference frame consists of 8 QSO images and 48 galaxies. The absolute proper motion is mu_alpha cos(delta) = 0.59 +-0.16 mas/yr and mu_delta = -0.15 +- 0.16 mas/yr. The corresponding orbit of Fornax is polar, with an eccentricity of 0.27, and a radial period of 4.5 Gyr. Fornax's current location is near pericenter. The direction of the motion of Fornax supports the notion that Fornax belongs to the Fornax-LeoI-LeoII-Sculptor-Sextans stream as hypothesized by Lynden-Bell (1976, 1982) and Majewski (1994). According to our orbit determination, Fornax crossed the Magellanic plane \~190 Myr ago, a time that coincides with the termination of the star-formation process in Fornax. We propose that ram-pressure stripping due to the passage of Fornax through a gaseous medium denser than the typical intragalactic medium left behind from the LMC may have caused the end of star formation in Fornax. The excess, anomalous clouds within the South Galactic pole region of the Magellanic Stream whose origin has long been debated in the literature as constituents of either the Magellanic Stream or of the extragalactic Sculptor group, are found to lie along the orbit of Fornax. We speculate that these clouds are stripped material from Fornax as the dwarf crossed the Magellanic Clouds' orbit.Comment: Accepted for publication in Astronomical Journal. The version with high resolution figures can be found at ftp://pegasus.astro.yale.edu/pub/dana/paper

    Chemokine and inflammatory cytokine changes during chronic wound healing

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75761/1/j.1524-475X.1997.50405.x.pd

    Orbits of Globular Clusters in the Outer Galaxy: NGC 7006

    Get PDF
    We present a proper motion study of the distant globular cluster NGC 7006 based on the measurement of 25 photographic plates spanning a 40-year interval. The absolute proper motion determined with respect to extragalactic objects is (-0.96, -1.14) +- (0.35, 0.40) mas/yr. The total space velocity of NGC 7006 in a Galactocentric rest frame is 279 km/s, placing the cluster on one of the most energetic orbits (Ra =102 kpc) known to date for clusters within 40-kpc from the Galactic center. We compare the orbits of four clusters that have apocentric radii larger than 80 kpc (NGC 5466, NGC 6934, NGC 7006 and Pal 13) with those of Galactic satellites with well-measured proper motions. These clusters have orbits that are highly eccentric and of various inclinations with respect to the Galactic plane. In contrast, the orbits of the Galactic satellites are of low to moderate eccentricity and highly inclined. Based on orbit types, chemical abundances and cluster parameters, we discuss the properties of the hypothetical host systems of the remote globular clusters in the Searle-Zinn paradigm. It is apparent that clusters such as NGC 5466, NGC 6934 and NGC 7006 formed in systems that more likely resemble the Fornax dSph, rather than the Sagittarius dSph. We also discuss plausible causes for the difference found so far between the orbit type of outer halo clusters and that of Galactic satellites and for the tentative, yet suggestive phase-space scatter found among outer halo clusters.Comment: 27 pages, 5 figures, to be published in the Astronomical Journa

    Mast cells produce ENA‐78, which can function as a potent neutrophil chemoattractant during allergic airway inflammation

    Full text link
    The inflammatory response during allergic airway inflammation involves the recruitment of multiple leukocyte populations, including neutrophils, monocytes, lymphocytes, and eosinophils. All of these populations likely contribute to the pathology observed during repeated episodes of allergic airway inflammation. We have examined the role of a human neutrophil‐specific chemokine (C‐x‐C), ENA‐78, in a model of allergic airway responses and identified murine mast cells as a cellular source of an ENA‐78‐like molecule. Within this allergic airway model, neutrophil infiltration into the airway occurs within 4–8 h post‐allergen challenge, persists within the airway until 24 h, and resolves by 48 h post‐challenge. Neutrophil influx precedes the eosinophil infiltration, which peaks in the airway at 48 h post‐allergen challenge. In this study the production of ENA‐78 from challenged lungs demonstrated a significant increase in the allergen‐,but not vehicle‐, challenged lungs. In vivo neutralization of ENA‐78 by passive immunization demonstrated a significant decrease in peak neutrophil infiltration at 8 h, with no effect on the eosinophil infiltration at 48 h post‐challenge. Because ENA‐78 has been shown to be chemotactic for neutrophils and given the involvement of mast cell degranulation in allergic responses, we examined mast cells for the presence of ENA‐78. Cultured mast cells spontaneously released ENA‐78, but on activation with IgE + antigen, NG‐L‐arginine methyl ester or compound 48/80 produced significantly increased levels of ENA‐78. Supernatants from sonicated MC‐9 mast cells induced an overwhelming influx of neutrophils into the BAL by 4 h post‐intratracheal injection into mice, suggesting that the mast cell is a significant source of neutrophil chemotactic factors. Mast cell supernatant‐mediated neutrophil infiltration was substantially decreased by preincubation of the supernatant with antibodies specific for ENA‐78. These data indicate a major neutrophil chemotactic protein produced by mast cells during allergic responses may be mast cell‐derived ENA‐78. J. Leukoc. Biol. 63: 746–751; 1998.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141710/1/jlb0746.pd

    Exploring Halo Substructure with Giant Stars. VI. Extended Distributions of Giant Stars Around the Carina Dwarf Spheroidal Galaxy -- How Reliable Are They?

    Full text link
    The question of the existence of active tidal disruption around various dSph galaxies remains controversial. That debate often centers on the nature (bound vs. unbound) of extended populations of stars. However, the more fundamental issue of the very existence of the extended populations is still contentious. We present an evaluation of the debate centering on one particular dSph, Carina, for which claims both for and against the existence of stars beyond the King radius have been made. Our review includes an examination of all previous studies bearing on the Carina radial profile and shows that the survey method which achieves the highest detected dSph signal-to-background in the outer parts of the galaxy is the Washington M, T2 + DDO51 (MTD) filter approach from Paper II in this series. We then address statistical methods used to evaluate the reliability of MTD surveys in the presence of photometric errors and for which a new, a posteriori statistical analysis methodology is provided. Finally, these statistical methods are tested by new spectroscopy of stars in the MTD-selected Carina candidate sample. Of 74 candidate giants with follow-up spectroscopy, the MTD technique identified 61 new Carina members, including 8 stars outside the King radius. From a sample of 29 stars not initially identified as candidate Carina giants but that lie just outside of our selection criteria, 12 have radial velocities consistent with membership, including 5 extratidal stars. Carina is shown to have an extended population of giant stars extending to a major axis radius of 40' (1.44x the nominal King radius).Comment: 56 pages, 10 figures. Submitted to the Astronomical Journal, 2004 Sep 2

    A Two Micron All-Sky Survey View of the Sagittarius Dwarf Galaxy: II. Swope Telescope Spectroscopy of M Giant Stars in the Dynamically Cold Sagittarius Tidal Stream

    Get PDF
    We present moderate resolution (~6 km/s) spectroscopy of 284 M giant candidates selected from the Two Micron All Sky Survey photometry. Radial velocities (RVs) are presented for stars mainly in the south, with a number having positions consistent with association to the trailing tidal tail of the Sagittarius (Sgr) dwarf galaxy. The latter show a clear RV trend with orbital longitude, as expected from models of the orbit and destruction of Sgr. A minimum 8 kpc width of the trailing stream about the Sgr orbital midplane is implied by verified RV members. The coldness of this stream (dispersion ~10 km/s) provides upper limits on the combined contributions of stream heating by a lumpy Galactic halo and the intrinsic dispersion of released stars, which is a function of the Sgr core mass. The Sgr trailing arm is consistent with a Galactic halo containing one dominant, LMC-like lump, however some lumpier halos are not ruled out. An upper limit to the total M/L of the Sgr core is 21 in solar units. A second structure that roughly mimics expectations for wrapped, leading Sgr arm debris crosses the trailing arm in the Southern Hemisphere; however, this may also be an unrelated tidal feature. Among the <13 kpc M giants toward the South Galactic Pole are some with large RVs that identify them as halo stars, perhaps part of the Sgr leading arm near the Sun. The positions and RVs of Southern Hemisphere M giants are compared with those of southern globular clusters potentially stripped from the Sgr system and support for association of Pal 2 and Pal 12 with Sgr debris is found. Our discussion includes description of a masked-filtered cross-correlation methodology that achieves better than 1/20 of a resolution element RVs in moderate resolution spectra.Comment: 41 pages, 6 figures, Astronomical Journal, in press (submitted Nov. 24, 2003; tentatively scheduled for July 2004 issue
    • 

    corecore