104 research outputs found
Comments on "Timing Estimation and Resynchronization for Amplify-and-Forward Communication Systems
This correspondence first shows that the Cramer-
Rao lower bound (CRLB) derivations in the above paper are
incorrect. In addition, contrary to the claims in the above
paper, the assumptions of perfect timing offset estimation and
matched-filtering at the relays affect the generality of the
analytical results and cannot be justified assumption
Energy Harvesting Wireless Sensor Networks: Delay Analysis Considering Energy Costs of Sensing and Transmission
Energy harvesting (EH) provides a means of greatly enhancing the lifetime of
wireless sensor nodes. However, the randomness inherent in the EH process may
cause significant delay for performing sensing operation and transmitting the
sensed information to the sink. Unlike most existing studies on the delay
performance of EH sensor networks, where only the energy consumption of
transmission is considered, we consider the energy costs of both sensing and
transmission. Specifically, we consider an EH sensor that monitors some status
environmental property and adopts a harvest-then-use protocol to perform
sensing and transmission. To comprehensively study the delay performance, we
consider two complementary metrics and analytically derive their statistics:
(i) update age - measuring the time taken from when information is obtained by
the sensor to when the sensed information is successfully transmitted to the
sink, i.e., how timely the updated information at the sink is, and (ii) update
cycle - measuring the time duration between two consecutive successful
transmissions, i.e., how frequently the information at the sink is updated. Our
results show that the consideration of sensing energy cost leads to an
important tradeoff between the two metrics: more frequent updates result in
less timely information available at the sink.Comment: submitted for possible journal publicatio
Residual Self-Interference Cancellation and Data Detection in Full-Duplex Communication Systems
Residual self-interference cancellation is an important practical requirement for realizing the full potential of full-duplex (FD) communication. Traditionally, the residual selfinterference is cancelled via digital processing at the baseband, which requires accurate knowledge of channel estimates of the desired and self-interference channels. In this work, we consider point-to-point FD communication and propose a superimposed signaling technique to cancel the residual self-interference and detect the data without estimating the unknown channels. We show that when the channel estimates are not available, data detection in FD communication results in ambiguity if the modulation constellation is symmetric around the origin. We demonstrate that this ambiguity can be resolved by superimposed signalling, i.e., by shifting the modulation constellation away from the origin, to create an asymmetric modulation constellation. We compare the performance of the proposed detection method to that of the conventional channel estimation-based detection method, where the unknown channels are first estimated and then the data signal is detected. Simulations show that for the same average energy over a transmission block, the bit error rate performance of the proposed detection method is better than that of the conventional method. The proposed method does not require any channel estimates and is bandwidth efficient
Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years
Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions
- …