12 research outputs found

    Focus: Health Care First Person piece by Dr. Steven Bonawitz, founder of North

    No full text
    Focus: Health Care First Person piece by Dr. Steven Bonawitz, founder of Northeast Plastic Surgery in Lewiston. Bonwitz offers cosmetic and reconstructive plastic surgery, along with skin care services. He works at both Central Maine Medical Center and St. Mary\u27s Regional Medical Center. Bonowitz notes a decline in serious facial injuries following motor vehicle accidents due to increased usage of seat belts and airbags. More common is low-velocity-type facial trauma resulting from fights. Many people are surprised that more than half of his overall practice is cosmetic surgery, mostly cosmetic breast surgery

    Latissimus Dorsi Myocutaneous Flap Procedure in a Swine Model

    No full text
    Background As surgical research expands in both breadth and scope, translational models become increasingly important. The accessibility, reproducibility, and clinical applicability of translational models is of vital importance to ensure adequate and accurate research. Though different flap models have been described, the literature lacks an in-depth, technical description of an easy large-animal preclinical model. We here describe the procedure for elevation of a latissimus dorsi flap in a swine. This flap contains muscle and skin that can be isolated on a vascular pedicle, transferred as a free flap, perfused, or innervated/denervated as dictated by the needs of the experiment. Methods Five different latissimus dorsi flaps were elevated in miniature swine. Careful attention was paid to anatomical landmarks and optimal placement of incision, dissection, and retraction. Temporary ischemia with vascular clamping was performed along with serial digital and infrared imaging both intra- and postoperatively. In three of the flaps with induced ischemia, the animal was observed for a 30-day follow up with daily photodocumentation and intermittent biopsy. Results A reproducible latissimus flap model was designed with optimized conditions. In the animals in which flaps were followed postoperatively, complete healing was seen within 30 days without evidence of procedure-related ischemia or loss of motor function. Conclusion We have identified and described a pre-clinical large animal flap model that can be easily reproduced for translational studies of multiple scientific areas including flap-based repair, ischemia, ischemia reperfusion, and operative technique. This provides an important model for ready replication in preclinical studies of many varieties

    A modified heterotopic swine hind limb transplant model for translational vascularized composite allotransplantation (VCA) research.

    No full text
    Vascularized Composite Allotransplantation (VCA) such as hand and face transplants represent a viable treatment option for complex musculoskeletal trauma and devastating tissue loss. Despite favorable and highly encouraging early and intermediate functional outcomes, rejection of the highly immunogenic skin component of a VCA and potential adverse effects of chronic multi-drug immunosuppression continue to hamper widespread clinical application of VCA. Therefore, research in this novel field needs to focus on translational studies related to unique immunologic features of VCA and to develop novel immunomodulatory strategies for immunomodulation and tolerance induction following VCA without the need for long term immunosuppression. This article describes a reliable and reproducible translational large animal model of VCA that is comprised of an osteomyocutaneous flap in a MHC-defined swine heterotopic hind limb allotransplantation. Briefly, a well-vascularized skin paddle is identified in the anteromedial thigh region using near infrared laser angiography. The underlying muscles, knee joint, distal femur, and proximal tibia are harvested on a femoral vascular pedicle. This allograft can be considered both a VCA and a vascularized bone marrow transplant with its unique immune privileged features. The graft is transplanted to a subcutaneous abdominal pocket in the recipient animal with a skin component exteriorized to the dorsolateral region for immune monitoring. Three surgical teams work simultaneously in a well-coordinated manner to reduce anesthesia and ischemia times, thereby improving efficiency of this model and reducing potential confounders in experimental protocols. This model serves as the groundwork for future therapeutic strategies aimed at reducing and potentially eliminating the need for chronic multi-drug immunosuppression in VCA
    corecore