16 research outputs found

    4-Channel C-band WDM transmitter based on 10 GHz graphene-silicon electro-absorption modulators

    Get PDF
    We demonstrate three 4-channelWDMtransmitters, each based on four graphenesilicon electro-absorption modulators with passivated graphene, achieving similar to 2.6dB insertion loss, similar to 5.5dB extinction ratio for 8V voltage swing and similar to 10GHz 3dB-bandwidth at 0V DC bias

    Current and emerging developments in subseasonal to decadal prediction

    Get PDF
    Weather and climate variations of subseasonal to decadal timescales can have enormous social, economic and environmental impacts, making skillful predictions on these timescales a valuable tool for decision makers. As such, there is a growing interest in the scientific, operational and applications communities in developing forecasts to improve our foreknowledge of extreme events. On subseasonal to seasonal (S2S) timescales, these include high-impact meteorological events such as tropical cyclones, extratropical storms, floods, droughts, and heat and cold waves. On seasonal to decadal (S2D) timescales, while the focus remains broadly similar (e.g., on precipitation, surface and upper ocean temperatures and their effects on the probabilities of high-impact meteorological events), understanding the roles of internal and externally-forced variability such as anthropogenic warming in forecasts also becomes important. The S2S and S2D communities share common scientific and technical challenges. These include forecast initialization and ensemble generation; initialization shock and drift; understanding the onset of model systematic errors; bias correct, calibration and forecast quality assessment; model resolution; atmosphere-ocean coupling; sources and expectations for predictability; and linking research, operational forecasting, and end user needs. In September 2018 a coordinated pair of international conferences, framed by the above challenges, was organized jointly by the World Climate Research Programme (WCRP) and the World Weather Research Prograame (WWRP). These conferences surveyed the state of S2S and S2D prediction, ongoing research, and future needs, providing an ideal basis for synthesizing current and emerging developments in these areas that promise to enhance future operational services. This article provides such a synthesis

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    5 × 25  Gbit/s WDM transmitters based on passivated graphene–silicon electro-absorption modulators

    Full text link
    Today, one of the key challenges of graphene devices is establishing fabrication processes that can ensure performance stability and repeatability and that can eventually enable production in high volumes. In this paper, we use up-scalable fabrication processes to demonstrate three five-channel wavelength-division multiplexing (WDM) transmitters, each based on five graphene-silicon electro-absorption modulators. A passivation-first approach is used to encapsulate graphene, which results in hysteresis-free and uniform performance across the five channels of each WDM transmitter, for a total of 15 modulators. Open-eye diagrams are obtained at 25 Gb/s using 2.5 V-pp, thus demonstrating potential for multi-channel data transmission at 5 x 25 Gb/s on each of the three WDM transmitters. (C) 2020 Optical Society of America

    High speed graphene-silicon electro-absorption modulators for the O-band and C-band

    Full text link
    In the past few years, graphene has drawn interest for applications in optoelectronic devices. Due to its extraordinary properties, i.e. wide optical bandwidth, tunable absorption, high carrier mobility, and CMOS compatibility, it is a candidate to improve current state-of-the-art high-speed optoelectronic devices, such as modulators. In this work, we present a model that describes the DC and high-speed behaviour of single-layer graphene-oxide-silicon electro-absorption modulators (EAM). We compare the theoretical analysis with experimental results, and we find that p-doped graphene combined with p-doped silicon enables high-speed operation at low DC bias. Using this configuration, we demonstrate 75 mu m long TM EAMs operating in the O-band and in the C-band. The O-band EAM exhibits 3.1 dB extinction ratio (ER) and 16.0 GHz 3 dB bandwidth at 1 V DC bias. With the C-band EAM we achieve 6.5 dB ER and 14.2 GHz 3 dB bandwidth at 0 V DC bias. Open eye diagrams up to 50 Gbit s(-1) are measured using 2.5 V-pp and -0.5 V DC bias at a wavelength of 1560 nm
    corecore