31 research outputs found
Predicting Student Achievement in Ohio: The Role of Expenditure Distribution
In the spring of 2005, political columnist George Will coined the phrase the “65 percent solution” in his Washington Post column in reference to an Arizona referendum that would have required at least 65% of every school district’s operational budget be spent on classroom instruction
Comparative Pathogenesis of an Avian H5N2 and a Swine H1N1 Influenza Virus in Pigs
Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs) to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal) to compare the pathogenesis of a low pathogenic (LP) H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals
Prevalence of Influenza A viruses in wild migratory birds in Alaska: Patterns of variation in detection at a crossroads of intercontinental flyways
<p>Abstract</p> <p>Background</p> <p>The global spread of the highly pathogenic avian influenza H5N1 virus has stimulated interest in a better understanding of the mechanisms of H5N1 dispersal, including the potential role of migratory birds as carriers. Although wild birds have been found dead during H5N1 outbreaks, evidence suggests that others have survived natural infections, and recent studies have shown several species of ducks capable of surviving experimental inoculations of H5N1 and shedding virus. To investigate the possibility of migratory birds as a means of H5N1 dispersal into North America, we monitored for the virus in a surveillance program based on the risk that wild birds may carry the virus from Asia.</p> <p>Results</p> <p>Of 16,797 birds sampled in Alaska between May 2006 and March 2007, low pathogenic avian influenza viruses were detected in 1.7% by rRT-PCR but no highly pathogenic viruses were found. Our data suggest that prevalence varied among sampling locations, species (highest in waterfowl, lowest in passerines), ages (juveniles higher than adults), sexes (males higher than females), date (highest in autumn), and analytical technique (rRT-PCR prevalence = 1.7%; virus isolation prevalence = 1.5%).</p> <p>Conclusion</p> <p>The prevalence of low pathogenic avian influenza viruses isolated from wild birds depends on biological, temporal, and geographical factors, as well as testing methods. Future studies should control for, or sample across, these sources of variation to allow direct comparison of prevalence rates.</p
GAMA/G10-COSMOS/3D-HST: The 0<z<5 cosmic star-formation history, stellar- and dust-mass densities
We use the energy-balance code MAGPHYS to determine stellar and dust masses, and dust corrected star-formation rates for over 200,000 GAMA galaxies, 170,000 G10-COSMOS galaxies and 200,000 3D-HST galaxies. Our values agree well with previously reported measurements and constitute a representative and homogeneous dataset spanning a broad range in stellar mass (10^8---10^12 Msol), dust mass (10^6---10^9 Msol), and star-formation rates (0.01---100 Msol per yr), and over a broad redshift range (0.0 < z < 5.0). We combine these data to measure the cosmic star-formation history (CSFH), the stellar-mass density (SMD), and the dust-mass density (DMD) over a 12 Gyr timeline. The data mostly agree with previous estimates, where they exist, and provide a quasi-homogeneous dataset using consistent mass and star-formation estimators with consistent underlying assumptions over the full time range. As a consequence our formal errors are significantly reduced when compared to the historic literature. Integrating our cosmic star-formation history we precisely reproduce the stellar-mass density with an ISM replenishment factor of 0.50 +/- 0.07, consistent with our choice of Chabrier IMF plus some modest amount of stripped stellar mass. Exploring the cosmic dust density evolution, we find a gradual increase in dust density with lookback time. We build a simple phenomenological model from the CSFH to account for the dust mass evolution, and infer two key conclusions: (1) For every unit of stellar mass which is formed 0.0065---0.004 units of dust mass is also formed; (2) Over the history of the Universe approximately 90 to 95 per cent of all dust formed has been destroyed and/or ejected
The neutron and its role in cosmology and particle physics
Experiments with cold and ultracold neutrons have reached a level of
precision such that problems far beyond the scale of the present Standard Model
of particle physics become accessible to experimental investigation. Due to the
close links between particle physics and cosmology, these studies also permit a
deep look into the very first instances of our universe. First addressed in
this article, both in theory and experiment, is the problem of baryogenesis ...
The question how baryogenesis could have happened is open to experimental
tests, and it turns out that this problem can be curbed by the very stringent
limits on an electric dipole moment of the neutron, a quantity that also has
deep implications for particle physics. Then we discuss the recent spectacular
observation of neutron quantization in the earth's gravitational field and of
resonance transitions between such gravitational energy states. These
measurements, together with new evaluations of neutron scattering data, set new
constraints on deviations from Newton's gravitational law at the picometer
scale. Such deviations are predicted in modern theories with extra-dimensions
that propose unification of the Planck scale with the scale of the Standard
Model ... Another main topic is the weak-interaction parameters in various
fields of physics and astrophysics that must all be derived from measured
neutron decay data. Up to now, about 10 different neutron decay observables
have been measured, much more than needed in the electroweak Standard Model.
This allows various precise tests for new physics beyond the Standard Model,
competing with or surpassing similar tests at high-energy. The review ends with
a discussion of neutron and nuclear data required in the synthesis of the
elements during the "first three minutes" and later on in stellar
nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic
Observations of Ly Emitters at High Redshift
In this series of lectures, I review our observational understanding of
high- Ly emitters (LAEs) and relevant scientific topics. Since the
discovery of LAEs in the late 1990s, more than ten (one) thousand(s) of LAEs
have been identified photometrically (spectroscopically) at to . These large samples of LAEs are useful to address two major astrophysical
issues, galaxy formation and cosmic reionization. Statistical studies have
revealed the general picture of LAEs' physical properties: young stellar
populations, remarkable luminosity function evolutions, compact morphologies,
highly ionized inter-stellar media (ISM) with low metal/dust contents, low
masses of dark-matter halos. Typical LAEs represent low-mass high- galaxies,
high- analogs of dwarf galaxies, some of which are thought to be candidates
of population III galaxies. These observational studies have also pinpointed
rare bright Ly sources extended over kpc, dubbed
Ly blobs, whose physical origins are under debate. LAEs are used as
probes of cosmic reionization history through the Ly damping wing
absorption given by the neutral hydrogen of the inter-galactic medium (IGM),
which complement the cosmic microwave background radiation and 21cm
observations. The low-mass and highly-ionized population of LAEs can be major
sources of cosmic reionization. The budget of ionizing photons for cosmic
reionization has been constrained, although there remain large observational
uncertainties in the parameters. Beyond galaxy formation and cosmic
reionization, several new usages of LAEs for science frontiers have been
suggested such as the distribution of {\sc Hi} gas in the circum-galactic
medium and filaments of large-scale structures. On-going programs and future
telescope projects, such as JWST, ELTs, and SKA, will push the horizons of the
science frontiers.Comment: Lecture notes for `Lyman-alpha as an Astrophysical and Cosmological
Tool', Saas-Fee Advanced Course 46. Verhamme, A., North, P., Cantalupo, S., &
Atek, H. (eds.) --- 147 pages, 103 figures. Abstract abridged. Link to the
lecture program including the video recording and ppt files :
https://obswww.unige.ch/Courses/saas-fee-2016/program.cg