272 research outputs found
Generalized Transformation Optics of Linear Materials
We continue the development of a manifestly 4-dimensional, completely
covariant, approach to transformation optics in linear dielectric materials
begun in a previous paper. This approach, which generalizes the Plebanski based
approach, is systematically applicable for all transformations and all general
linear materials. Importantly, it enables useful applications such as arbitrary
relative motion, transformations from arbitrary non-vacuum initial dielectric
media, and arbitrary space-times. This approach is demonstrated for a resulting
material that moves with uniform linear velocity. The inverse problem of this
covariant approach is shown to generalize Gordon's "optical metric".Comment: 16 pages, 2 figures. This version: minor clarification to tex
Q-based design equations for resonant metamaterials and experimental validation
Practical design parameters of resonant metamaterials, such as loss tangent,
are derived in terms of the quality factor of the resonant effective medium
permeability or permittivity. Through electromagnetic simulations of loop-based
resonant particles, it is also shown that the of the effective medium
response is essentially equal to the of an individual resonant particle.
Thus, by measuring the of a single fabricated metamaterial particle, the
effective permeability or permittivity of a metamaterial can be calculated
simply and accurately without requiring complex simulations, fabrication, or
measurements. Experimental validation shows that the complex permeability
analytically estimated from the measured of a single fabricated
self-resonant loop agrees with the complex permeability extracted from
parameter measurements of a metamaterial slab to better than 20%. This
equivalence reduces the design of a metamaterial to meet a given loss
constraint to the simpler problem of the design of a resonant particle to meet
a specific constraint. This analysis also yields simple analytical
expressions for estimating the loss tangent of a planar loop magnetic
metamaterial due to ohmic losses. It is shown that
is a strong lower bound for magnetic loss tangents for frequencies not too far
from 1 GHz. The ohmic loss of the metamaterial varies inversely with the
electrical size of the metamaterial particle, indicating that there is a loss
penalty for reducing the particle size at a fixed frequency
Design of Electromagnetic Cloaks and Concentrators Using Form-Invariant Coordinate Transformations of Maxwell's Equations
The technique of applying form-invariant, spatial coordinate transformations
of Maxwell's equations can facilitate the design of structures with unique
electromagnetic or optical functionality. Here, we illustrate the
transformation-optical approach in the designs of a square electromagnetic
cloak and an omni-directional electromagnetic field concentrator. The
transformation equations are described and the functionality of the devices is
numerically confirmed by two-dimensional finite element simulations. The two
devices presented demonstrate that the transformation optic approach leads to
the specification of complex, anisotropic and inhomogeneous materials with well
directed and distinct electromagnetic behavior.Comment: submitted to "Photonics and Nanostructures", Special Issue "PECS
VII", Elsevie
- …
