104 research outputs found

    MEMS practice, from the lab to the telescope

    Full text link
    Micro-electro-mechanical systems (MEMS) technology can provide for deformable mirrors (DMs) with excellent performance within a favorable economy of scale. Large MEMS-based astronomical adaptive optics (AO) systems such as the Gemini Planet Imager are coming on-line soon. As MEMS DM end-users, we discuss our decade of practice with the micromirrors, from inspecting and characterizing devices to evaluating their performance in the lab. We also show MEMS wavefront correction on-sky with the "Villages" AO system on a 1-m telescope, including open-loop control and visible-light imaging. Our work demonstrates the maturity of MEMS technology for astronomical adaptive optics.Comment: 14 pages, 15 figures, Invited Paper, SPIE Photonics West 201

    The Human Endogenous Circadian System Causes Greatest Platelet Activation during the Biological Morning Independent of Behaviors

    Get PDF
    Platelets are involved in the thromboses that are central to myocardial infarctions and ischemic strokes. Such adverse cardiovascular events have day/night patterns with peaks in the morning (~9 AM), potentially related to endogenous circadian clock control of platelet activation. The objective was to test if the human endogenous circadian system influences (1) platelet function and (2) platelet response to standardized behavioral stressors. We also aimed to compare the magnitude of any effects on platelet function caused by the circadian system with that caused by varied standardized behavioral stressors, including mental arithmetic, passive postural tilt and mild cycling exercise.We studied 12 healthy adults (6 female) who lived in individual laboratory suites in dim light for 240 h, with all behaviors scheduled on a 20-h recurring cycle to permit assessment of endogenous circadian function independent from environmental and behavioral effects including the sleep/wake cycle. Circadian phase was assessed from core body temperature. There were highly significant endogenous circadian rhythms in platelet surface activated glycoprotein (GP) IIb-IIIa, GPIb and P-selectin (6-17% peak-trough amplitudes; p ≤ 0.01). These circadian peaks occurred at a circadian phase corresponding to 8-9 AM. Platelet count, ATP release, aggregability, and plasma epinephrine also had significant circadian rhythms but with later peaks (corresponding to 3-8 PM). The circadian effects on the platelet activation markers were always larger than that of any of the three behavioral stressors.These data demonstrate robust effects of the endogenous circadian system on platelet activation in humans--independent of the sleep/wake cycle, other behavioral influences and the environment. The 9 AM timing of the circadian peaks of the three platelet surface markers, including platelet surface activated GPIIb-IIIa, the final common pathway of platelet aggregation, suggests that endogenous circadian influences on platelet function could contribute to the morning peak in adverse cardiovascular events as seen in many epidemiological studies

    Mapping local and global variability in plant trait distributions

    Get PDF
    Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration - specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ∼50×50-km cells across the entire vegetated land surface. We do this in several ways - without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means

    Genome Sequencing Reveals Widespread Virulence Gene Exchange among Human Neisseria Species

    Get PDF
    Commensal bacteria comprise a large part of the microbial world, playing important roles in human development, health and disease. However, little is known about the genomic content of commensals or how related they are to their pathogenic counterparts. The genus Neisseria, containing both commensal and pathogenic species, provides an excellent opportunity to study these issues. We undertook a comprehensive sequencing and analysis of human commensal and pathogenic Neisseria genomes. Commensals have an extensive repertoire of virulence alleles, a large fraction of which has been exchanged among Neisseria species. Commensals also have the genetic capacity to donate DNA to, and take up DNA from, other Neisseria. Our findings strongly suggest that commensal Neisseria serve as reservoirs of virulence alleles, and that they engage extensively in genetic exchange

    The T7-Related Pseudomonas putida Phage Ï•15 Displays Virion-Associated Biofilm Degradation Properties

    Get PDF
    Formation of a protected biofilm environment is recognized as one of the major causes of the increasing antibiotic resistance development and emphasizes the need to develop alternative antibacterial strategies, like phage therapy. This study investigates the in vitro degradation of single-species Pseudomonas putida biofilms, PpG1 and RD5PR2, by the novel phage ϕ15, a ‘T7-like virus’ with a virion-associated exopolysaccharide (EPS) depolymerase. Phage ϕ15 forms plaques surrounded by growing opaque halo zones, indicative for EPS degradation, on seven out of 53 P. putida strains. The absence of haloes on infection resistant strains suggests that the EPS probably act as a primary bacterial receptor for phage infection. Independent of bacterial strain or biofilm age, a time and dose dependent response of ϕ15-mediated biofilm degradation was observed with generally a maximum biofilm degradation 8 h after addition of the higher phage doses (104 and 106 pfu) and resistance development after 24 h. Biofilm age, an in vivo very variable parameter, reduced markedly phage-mediated degradation of PpG1 biofilms, while degradation of RD5PR2 biofilms and ϕ15 amplification were unaffected. Killing of the planktonic culture occurred in parallel with but was always more pronounced than biofilm degradation, accentuating the need for evaluating phages for therapeutic purposes in biofilm conditions. EPS degrading activity of recombinantly expressed viral tail spike was confirmed by capsule staining. These data suggests that the addition of high initial titers of specifically selected phages with a proper EPS depolymerase are crucial criteria in the development of phage therapy

    Association of Resistance Exercise With the Incidence of Hypercholesterolemia in Men.

    Get PDF
    OBJECTIVE: To examine the associations of resistance exercise, independent of and combined with aerobic exercise, with the risk of development of hypercholesterolemia in men. PATIENTS AND METHODS: This study used data from the Aerobics Center Longitudinal Study, which is a cohort examining the associations of clinical and lifestyle factors with the development of chronic diseases and mortality. Participants received extensive preventive medical examinations at the Cooper Clinic in Dallas, Texas, between January 1, 1987, and December 31, 2006. A total of 7317 men aged 18 to 83 years (mean age, 46 years) without hypercholesterolemia at baseline were included. Frequency (times per week) and total amount (min/wk) of resistance and aerobic exercise were determined by self-report. Hypercholesterolemia was defined as a total cholesterol level of 240 mg/dL or higher or physician diagnosis. RESULTS: During a median (interquartile range) follow-up of 4 (2 to 7) years, hypercholesterolemia developed in 1430 of the 7317 men (20%). Individuals meeting the resistance exercise guidelines (≥2 d/wk) had a 13% lower risk of development of hypercholesterolemia (hazard ratio [HR], 0.87; 95% CI, 0.76-0.99; P=.04) after adjustment for general characteristics, lifestyle factors, and aerobic exercise. In addition, less than 1 h/wk and 2 sessions per week of resistance exercise were associated with 32% and 31% lower risks of hypercholesterolemia (HR, 0.68; 95% CI, 0.54-0.86; P=.001; and HR, 0.69; 95% CI, 0.54-0.88; P=.003), respectively, compared with no resistance exercise. Higher levels of resistance exercise did not provide benefits. Meeting both resistance and aerobic exercise guidelines (≥500 metabolic equivalent task min/wk) lowered the risk of development of hypercholesterolemia by 21% (HR, 0.79; 95% CI, 0.68-0.91; P=.002). compared with meeting none of the guidelines. CONCLUSION: Compared with no resistance exercise, less than 1 h/wk of resistance exercise, independent of aerobic exercise, is associated with a significantly lower risk of development of hypercholesterolemia in men (P=.001). However, the lowest risk of hypercholesterolemia was found at 58 min/wk of resistance exercise. This finding suggests that resistance exercise should be encouraged to prevent hypercholesterolemia in men. However, future studies with a more rigorous analysis including major potential confounders (eg, diet, medications) are warranted

    Global change effects on plant communities are magnified by time and the number of global change factors imposed

    Get PDF
    Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously
    • …
    corecore