5 research outputs found

    A chlorophyll-a algorithm for Landsat-8 based on mixture density networks

    Get PDF
    Material suplementario disponible en:Retrieval of aquatic biogeochemical variables, such as the near-surface concentration of chlorophyll-a (Chla) in inland and coastal waters via remote observations, has long been regarded as a challenging task. This manuscript applies Mixture Density Networks (MDN) that use the visible spectral bands available by the Operational Land Imager (OLI) aboard Landsat-8 to estimate Chla. We utilize a database of co-located in situ radiometric and Chla measurements (N = 4,354), referred to as Type A data, to train and test an MDN model (MDNA). This algorithm’s performance, having been proven for other satellite missions, is further evaluated against other widely used machine learning models (e.g., support vector machines), as well as other domain-specific solutions (OC3), and shown to offer significant advancements in the field. Our performance assessment using a held-out test data set suggests that a 49% (median) accuracy with near-zero bias can be achieved via the MDNA model, offering improvements of 20 to 100% in retrievals with respect to other models. The sensitivity of the MDNA model and benchmarking methods to uncertainties from atmospheric correction (AC) methods, is further quantified through a semi-global matchup dataset (N = 3,337), referred to as Type B data. To tackle the increased uncertainties, alternative MDN models (MDNB) are developed through various features of the Type B data (e.g., Rayleigh-corrected reflectance spectra ρs ). Using held-out data, along with spatial and temporal analyses, we demonstrate that these alternative models show promise in enhancing the retrieval accuracy adversely influenced by the AC process. Results lend support for the adoption of MDNB models for regional and potentially global processing of OLI imagery, until a more robust AC method is developed. Index Terms—Chlorophyll-a, coastal water, inland water, Landsat-8, machine learning, ocean color, aquatic remote sensing

    Bio-optical Properties of Cyanobacteria Blooms in Western Lake Erie

    Get PDF
    There is a growing use of remote sensing observations for detecting and quantifying freshwater cyanobacteria populations, yet the inherent optical properties of these communities in natural settings, fundamental to bio-optical algorithms, are not well known. Toward bridging this knowledge gap, we measured a full complement of optical properties in western Lake Erie during cyanobacteria blooms in the summers of 2013 and 2014. Our measurements focus attention on the optical uniqueness of cyanobacteria blooms, which have consequences for remote sensing and bio-optical modeling. We found the cyanobacteria blooms in the western basin during our field work were dominated by Microcystis, while the waters in the adjacent central basin were dominated by Planktothrix. Chlorophyll concentrations ranged from 1 to over 135 μg/L across the study area with the highest concentrations associated with Microcystis in the western basin. We observed large, amorphous colonial Microcystis structures in the bloom area characterized by high phytoplankton absorption and high scattering coefficients with a mean particle backscatter ratio at 443 nm \u3e 0.03, which is higher than other plankton types and more comparable to suspended inorganic sediments. While our samples contained mixtures of both, our analysis suggests high contributions to the measured scatter and backscatter coefficients from cyanobacteria. Our measurements provide new insights into the optical properties of cyanobacteria blooms, and indicate that current semi-analytic models are likely to have problems resolving a closed solution in these types of waters as many of our observations are beyond the range of existing model components. We believe that different algorithm or model approaches are needed for these conditions, specifically for phytoplankton absorption and particle backscatter components. From a remote sensing perspective, this presents a challenge not only in terms of a need for new algorithms, but also for determining when to apply the best algorithm for a given situation. These results are new in the sense that they represent a complete description of the optical properties of freshwater cyanobacteria blooms, and are likely to be representative of bloom conditions for other systems containing Microcystis cells and colonies

    Advancing cyanobacteria biomass estimation from hyperspectral observations: Demonstrations with HICO and PRISMA imagery

    Get PDF
    Retrieval of the phycocyanin concentration (PC), a characteristic pigment of, and proxy for, cyanobacteria biomass, from hyperspectral satellite remote sensing measurements is challenging due to uncertainties in the remote sensing reflectance (∆Rrs) resulting from atmospheric correction and instrument radiometric noise. Although several individual algorithms have been proven to capture local variations in cyanobacteria biomass in specific regions, their performance has not been assessed on hyperspectral images from satellite sensors. Our work leverages a machine-learning model, Mixture Density Networks (MDNs), trained on a large (N = 939) dataset of collocated in situ chlorophyll-a concentrations (Chla), PCs, and remote sensing reflectance (Rrs) measurements to estimate PC from all relevant spectral bands. The performance of the developed model is demonstrated via PC maps produced from select images of the Hyperspectral Imager for the Coastal Ocean (HICO) and Italian Space Agency's PRecursore IperSpettrale della Missione Applicativa (PRISMA) using a matchup dataset. As input to the MDN, we incorporate a combination of widely used band ratios (BRs) and line heights (LHs) taken from existing multispectral algorithms, that have been proven for both Chla and PC estimation, as well as novel BRs and LHs to increase the overall cyanobacteria biomass estimation accuracy and reduce the sensitivity to ∆Rrs. When trained on a random half of the dataset, the MDN achieves uncertainties of 44.3%, which is less than half of the uncertainties of all viable optimized multispectral PC algorithms. The MDN is notably better than multispectral algorithms at preventing overestimation on low (10 mg m−3). According to our extensive assessments, the developed model is anticipated to enable practical PC products from PRISMA and HICO, therefore the model is promising for planned hyperspectral missions, such as the Plankton Aerosol and Cloud Ecosystem (PACE). This advancement will enhance the complementary roles of hyperspectral radiometry from satellite and low-altitude platforms for quantifying and monitoring cyanobacteria harmful algal blooms at both large and local spatial scales
    corecore