91 research outputs found
Detection of Mines in Acoustic Images using Higher Order Spectral Features
A new pattern-recognition algorithm detects approximately 90% of the mines hidden in the Coastal Systems Station Sonar0, 1, and 3 databases of cluttered acoustic images, with about 10% false alarms. Similar to other approaches, the algorithm presented here includes processing the images with an adaptive Wiener filter (the degree of smoothing depends on the signal strength in a local neighborhood) to remove noise without destroying the structural information in the mine shapes, followed by a two-dimensional FIR filter designed to suppress noise and clutter, while enhancing the target signature. A double peak pattern is produced as the FIR filter passes over mine highlight and shadow regions. Although the location, size, and orientation of this pattern within a region of the image can vary, features derived from higher order spectra (HOS) are invariant to translation, rotation, and scaling, while capturing the spatial correlations of mine-like objects. Classification accuracy is improved by combining features based on geometrical properties of the filter output with features based on HOS. The highest accuracy is obtained by fusing classification based on bispectral features with classification based on trispectral features
Field evidence of inverse energy cascades in the surfzone
Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(8),(2020): 2315-2321, doi:10.1175/JPO-D-19-0327.1.Low-frequency currents and eddies transport sediment, pathogens, larvae, and heat along the coast and between the shoreline and deeper water. Here, low-frequency currents (between 0.1 and 4.0 mHz) observed in shallow surfzone waters for 120 days during a wide range of wave conditions are compared with theories for generation by instabilities of alongshore currents, by ocean-wave-induced sea surface modulations, and by a nonlinear transfer of energy from breaking waves to low-frequency motions via a two-dimensional inverse energy cascade. For these data, the low-frequency currents are not strongly correlated with shear of the alongshore current, with the strength of the alongshore current, or with wave-group statistics. In contrast, on many occasions, the low-frequency currents are consistent with an inverse energy cascade from breaking waves. The energy of the low-frequency surfzone currents increases with the directional spread of the wave field, consistent with vorticity injection by short-crested breaking waves, and structure functions increase with spatial lags, consistent with a cascade of energy from few-meter-scale vortices to larger-scale motions. These results include the first field evidence for the inverse energy cascade in the surfzone and suggest that breaking waves and nonlinear energy transfers should be considered when estimating nearshore transport processes across and along the coast.Funding was provided by a Vannevar Bush Faculty Fellowship [from OUSD(R&E)] and NSF
A surfzone morphological diffusivity estimated from the evolution of excavated holes
Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 4628â4636, doi:10.1002/2014GL060519.Downslope gravity-driven sediment transport smooths steep nearshore bathymetric features, such as channels, bars, troughs, cusps, mounds, pits, scarps, and bedforms. Downslope transport appears approximately as a diffusive term in the sediment continuity equation predicting changes in bed level, with a morphological diffusivity controlling the rate of seafloor smoothing. Despite the importance of surfzone sediment transport and morphological evolution, the size of the downslope transport term in nearshore models varies widely, and theories have not been tested with field measurements. Here observations of the infill of large excavated holes in an energetic inner surf zone provide the first opportunity to infer the morphological diffusivity in the field. The estimated diffusion coefficient is consistent with a theoretical bedload morphological diffusivity that scales with the three-halves power of the representative bed shear stress.Funding was provided by the Assistant
Secretary of Defense for Research and
Engineering, a National Defense Science
and Engineering Graduate Fellowship, a
National Science Foundation Graduate
Research Fellowship, and the Office of
Naval Research.2015-01-1
Observations and model simulations of wave-current interaction on the inner shelf
Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016); 198â208, doi:10.1002/2015JC010788.Wave directions and mean currents observed for two 1 month long periods in 7 and 2 m water depths along 11 km of the southern shoreline of Martha's Vineyard, MA, have strong tidal modulations. Wave directions are modulated by as much as 70° over a tidal cycle. The magnitude of the tidal modulations in the wavefield decreases alongshore to the west, consistent with the observed decrease in tidal currents from 2.1 to 0.2 m/s along the shoreline. A numerical model (SWAN and Deflt3D-FLOW) simulating waves and currents reproduces the observations accurately. Model simulations with and without wave-current interaction and tidal depth changes demonstrate that the observed tidal modulations of the wavefield primarily are caused by wave-current interaction and not by tidal changes to water depths over the nearby complex shoals.ONR, NSF, Sea Grant, NDSEG, an MIT Presidential Graduate Fellowship, and ASD(R&E)2016-07-1
Storm impact on morphological evolution of a sandy inlet
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 5751-5762, doi:10.1029/2017JC013708.Observations of waves, currents, and bathymetric change in shallow water (8 m). A numerical model (Delft3D, 2DH mode) simulating waves, currents, and morphological change reproduces the observations with the inclusion of hurricane force winds and sediment transport parameters adjusted based on modelâdata comparisons. For simulations of short hurricanes and longer nor'easters with identical offshore total timeâintegrated wave energy, but different peak wave energies and storm durations, morphological change is correlated (R2 = 0.60) with storm intensity (total energy of the storm divided by the duration of the storm). Similarly, the erosion observed at the Sand Engine in the Netherlands is correlated with storm intensity. The observations and simulations suggest that the temporal distribution of energy in a storm event, as well as the total energy, impacts subsequent nearshore morphological change. Increased storm intensity enhances sediment transport in bathymetrically complex, mixed waveâandâtidalâcurrent energy environments, as well as at other waveâdominated sandy beaches.NationalâSecurityâScienceâandâEngineering and VannevarâBush Faculty Fellowships;
National Oceanic and Atmospheric Administration Sea Grant;
National Science Foundatio
Flow separation effects on shoreline sediment transport
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Coastal Engineering 125 (2017): 23â27, doi:10.1016/j.coastaleng.2017.04.007.Field-tested numerical model simulations are used to estimate the effects of an inlet, ebb shoal, wave height, wave direction, and shoreline geometry on the variability of bathymetric change on a curved coast with a migrating inlet and strong nearshore currents. The model uses bathymetry measured along the southern shoreline of Marthaâs Vineyard, MA, and was validated with waves and currents observed from the shoreline to ~10-m water depth. Between 2007 and 2014, the inlet was open and the shoreline along the southeast corner of the island eroded ~200 m and became sharper. Between 2014 and 2015, the corner accreted and became smoother as the inlet closed. Numerical simulations indicate that variability of sediment transport near the corner shoreline depends more strongly on its radius of curvature (a proxy for the separation of tidal flows from the coast) than on the presence of the inlet, the ebb shoal, or wave height and direction. As the radius of curvature decreases (as the corner sharpens), tidal asymmetry of nearshore currents is enhanced, leading to more sediment transport near the shoreline over several tidal cycles. The results suggest that feedbacks between shoreline geometry and inner-shelf flows can be important to coastal erosion and accretion in the vicinity of an inlet.Funding was provided by NSF, Sea Grant (NOAA), NDSEG, ASD(R&E), and ONR
Wave-driven along-channel subtidal flows in a well-mixed ocean inlet
Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 2987â3001, doi:10.1002/2014JC009839.Observations of waves, flows, and water levels collected for a month in and near a long, narrow, shallow (⌠3000 m long, 1000 m wide, and 5 m deep), well-mixed ocean inlet are used to evaluate the subtidal (periodsâ>â30 h) along-inlet momentum balance. Maximum tidal flows in the inlet were about 1.5 m/s and offshore significant wave heights ranged from about 0.5 to 2.5 m. The dominant terms in the local (across the km-wide ebb shoal) along-inlet momentum balance are the along-inlet pressure gradient, the bottom stress, and the wave radiation-stress gradient. Estimated nonlinear advective acceleration terms roughly balance in the channel. Onshore radiation-stress gradients owing to breaking waves enhance the flood flows into the inlet, especially during storms.Funding was provided by the Office of
Naval Research, the Office of the
Assistant Secretary of Defense for
Research and Engineering, and a
National Defense Science and
Engineering Graduate Fellowship.2014-11-2
Curvatureâ and windâdriven crossâchannel flows at an unstratified tidal bend
Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 3832-3843, doi:10.1029/2017JC013722.Observations of currents, water levels, winds, and bathymetry collected for a month at an unstratified, narrow (150 m), shallow (8 m), 90° tidal inlet bend are used to evaluate an analytical model for curvatureâdriven flow and the effects of local wind on the crossâchannel circulation. Alongâchannel flows ranged from â1.0 to 1.4 m/s (positive is inland), and the magnitudes of crossâchannel flows were roughly 0.1â0.2 m/s near the outer bank of the bend. Crossâchannel observations suggest the lateral seaâsurface gradients and alongâchannel flows are tidally asymmetric and spatially variable. The depthâaveraged alongâchannel dynamics are consistent with a balance between the surface tilt and centrifugal acceleration. The vertical structure and magnitude of crossâchannel flows during weak winds are consistent with a oneâdimensional depthâvarying balance between centrifugal acceleration, bottom stress, and diffusion. Lowâpassed (to remove tides) surface and bottom crossâchannel flows are correlated (r2â=â0.5â0.7) with crossâchannel wind velocity, suggesting that winds can enhance or degrade the localâcurvatureâinduced, twoâlayer flow and can drive threeâlayer flow. The observed flow response to the wind is larger than that expected from a oneâdimensional balance, suggesting that twoâdimensional and threeâdimensional processes may be important.Funding was
provided by the Office of Naval
Research, a National Defense Science
and Engineering Graduate award, and
a Vannevar Bush Faculty Fellowship
from the Office of the Assistant
Secretary of Defense for Research and
Engineering.2018-10-1
Field observations of the evolution of plunging-wave shapes
© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in OâDea, A., Brodie, K., & Elgar, S. Field observations of the evolution of plunging-wave shapes. Geophysical Research Letters, 48(16), (2021): e2021GL093664, https://doi.org/10.1029/2021GL093664.There are few high-resolution field observations of the water surface during breaking owing to the difficulty of collecting spatially dense measurements in the surf zone, and thus the factors influencing breaking-wave shape in field conditions remain poorly understood. Here, the shape and evolution of plunging breakers is analyzed quantitatively using three-dimensional scans of the water surface collected at high spatial and temporal resolution with a multi-beam terrestrial lidar scanner. The observed internal void shapes in plunging breakers agree well with previously developed theoretical shapes at the onset of breaking, and become more elongated and less steep as breaking progresses. The normalized void area increases as the local bottom slope steepens and as the breaking depth decreases. The void shape becomes more circular as the local bottom slope and the ratio of breaking water depth to wavelength increase, as well as in conditions with opposing winds.Funding was provided by the U.S. Department of Defense (DoD) Laboratory University Collaboration Initiative program, the U.S. Army ERDC Military Engineering Basic Research Program from the Assistant Secretary of the Army for Acquisition, Logistics, and Technology, the Vannevar Bush Faculty Fellowship program, the National Science Foundation, and the U.S. Coastal Research Program. This project was supported in part by an appointment to the Research Participation Program at the DoD, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the DoD
Observations of swash zone velocities : a note on friction coefficients
Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C01027, doi:10.1029/2003JC001877.Vertical flow structure and turbulent dissipation in the swash zone are estimated using cross-shore fluid velocities observed on a low-sloped, fine-grained sandy beach [Raubenheimer, 2002] with two stacks of three current meters located about 2, 5, and 8 cm above the bed. The observations are consistent with an approximately logarithmic vertical decay of wave orbital velocities within 5 cm of the bed. The associated friction coefficients are similar in both the uprush and downrush, as in previous laboratory results. Turbulent dissipation rates estimated from velocity spectra increase with decreasing water depth from O(400 cm2/s3) in the inner surf zone to O(1000 cm2/s3) in the swash zone. Friction coefficients in the swash interior estimated with the logarithmic model and independently estimated by assuming that turbulent dissipation is balanced by production from vertical shear of the local mean flow and from wave breaking are between 0.02 and 0.06. These values are similar to the range of friction coefficients (0.02â0.05) recently estimated on impermeable, rough, nonerodible laboratory beaches and to the range of friction coefficients (0.01â0.03) previously estimated from field observations of the motion of the shoreward edge of the swash (run-up).This research was supported by ONR and
NSF
- âŠ