7 research outputs found

    Thoracic electrical bioimpedance theory and clinical possibilities in perioperative medicine

    Get PDF
    This article is a short review of thoracic electrical bioimpedance (TEB) theory and clinical capabilities. Cardiac output measurement is used primarily to guide therapy in complex, critically ill patients. Thoracic electrical bioimpedance is one of several noninvasive techniques that have been investigated to measure cardiac output and other hemodynamic parameters. Opinions in current literature continue to be conflicting as to the utility of thoracic electrical bioimpedance to that purpose. There is a limited number of good designed studies but they imply TEB is an accurate and reliable noninvasive method for determining cardiac output/cardiac index and it would be valuable for patients and circumstances in which intracardiac pressures and mixed venous blood samples are not necessary

    A computer code for the prediction of mill gases and hot air distribution between burners sections at the utility boiler

    No full text
    One of the main tasks during the design or simulation and analyses of the utility steam boiler operation is the prediction of a distribution of mill gases and hot air flow rates between burners sections. These are the boundary conditions for the combustion process in the boiler furnace, and they strongly influence the steam boiler economy and reliability of operation. A computer code for the prediction of mill gases and hot air distribution between boiler burners has been developed. The code is based on simultaneous calculations of material and heat balances for the fail mill and corresponding air tracts. This paper presents a methodology of performed calculations, the code structure, and results obtained for the steam boiler furnace of 350 MWe thermal power plant equipped with eight fall mills. (C) 2008 Elsevier Ltd. All rights reserved

    Recurrence of giant cell tumour of bone: role of p53, cyclin D1, beta-catenin and Ki67

    No full text
    To determine various clinical, radiographic, and pathological parameters which may indicate an increased risk of Giant cell tumour of bone (GCTB) recurrence after surgical therapy. The study included a total of 164 GCTB samples; 118 (72 %) primary tumours, and 46 (28 %) recurrences; which were analyzed on immunohistochemistry for expression of Ki67, p53, cyclin D1, and beta-catenin. Among 13 analyzed clinical, radiological, and histological variables, which presented possible predictive factors for the incidence of GCTB relapse, univariate logistic regression (ULR) extract three highly statistically significant parameters: 1) lesion localization, 2) nuclear p53 expression in mononuclear cells, and 3) nuclear cyclin D1 expression in giant multinuclear cells. The multivariate logistic regression (MLR), revealing that p53 expression in mononuclear cells was the most significant predictive factor (HR = 6,181 p LT 0,001), the positivity of which indicated six times higher probability for recurrence in GCTB. The expression of cyclin D1 in giant cells, containing less than 15 nuclei, was also statistically significant (HR = 8,398, p = 0,038) for predicting the recurrence, and demonstrated eight times more frequent recurrence in positive tumours. This study confirmed independent predicting factors for GCTB reccurence: p53 expression in mononuclear tumour cells and cyclin D1 expression in giant multinuclear cells. Results are new addition to generally known parameters, such as: localization of lesion, number of surgical interventions, clear destruction of cortex with the presence of extracompartmental lesion, and histological criteria for malignancy and can help in further research and treatment of GCTB
    corecore