33 research outputs found

    Efficacy of mineral and organic adsorbent in alleviating harmful effects of zearalenone on pig blood serum protein status

    Get PDF
    The influence of zearalenone on blood serum protein status and the feasibility of utilizing a modified clinoptilolite and esterified glucomannan to alleviate its harmful effects was examined in two trials, 31 and 29 days long, conducted on a total of 64 pigs (32 each) 60 days old, divided into four groups, each containing 8 pigs. Control groups (K) received noncontaminated feed, while experimental groups received feed supplemented with 3.84 mg/kg in the first trial and 5.12 mg/kg of zearalenone in the second trial. Pigs in the first experimental groups (O-I) were given feed with toxin only. Modified clinoptilolite in the amount of 0.2% and esterified glucomannan in the amount of 0.1% were introduced in contaminated feed of the second (O-II) and the third experimental groups (O-III) of both trials. With the use of contaminated feed, a declining trend of the A/G ratio was observed: decrease of albumin content and increase of globulin content on account of the _ globulin fraction. A decrease of the _ globulin fraction was detected at the same time. Total protein concentration was also lower. The application of adsorbents successfully alleviated harmful effects of the F-2 toxin on the affected biochemical parameters in blood serum

    Uticaj produženog tretiranja ohratoksinom A na status proteina krvnog seruma brojlera

    Get PDF
    The 42 day long trial was performed on Hybro broilers divided into four groups. After a 14 day preexperimental period, the groups were offered feed contaminated by 0.5 ppm ochratoxin A (OA) for 0, 7, 14 or 21 days. Blood samples were taken after the period of toxin addition and the remaining birds from the control and experimental groups were normally fed with mash without added OA until the 42nd day of the trial, when blood samples were taken again. The total level of serum proteins was not changed during of prolonged treatment with OA, but a significant increase of albumin together with a decrease of the Ī³-globulin fraction were noted. A/G ratio suggested that globulins were the dominant protein fraction in blood serum samples obtained from all broilers included in this trail. The concentrations of Ī± and Ī² globulins in serum were within the physiological limits. It could be concluded that the low dietary OA level (0.5 ppm) had a possible cumulative, but not acute effect on blood serum protein status in broilers, dependent on the duration of exposure.Ogled je izveden na Hybro brojlerima podeljenim u četiri grupe a trajao je 42 dana. Nakon četrnaestodnevnog pripremnog periodaogledne grupe su hranjene hranom kontaminiranom ohratoksinom A u količini od 5 ppm u toku 7, 14 Hi 21 dan. Uzorci krvi za ispitivanje uzimani su nakon perioda ishrane kontaminiranom hranom a preostale jedinke hranjene su hranom bez dodatog toksina do kraja ogleda. Na kraju ogleda uzeti su uzorci krvi za ispitivanje od svih grupa. KoriŔćena količina OA u ispitivanom vremenu ekspozicije nema uticaj na koncentraciju ukupnih proteina. Uočeno je signifikantno povećanje albumina zajedno sa smanjenjem Ī³-globulina. Odnos AG ukazuje da su globulini dominantna frakcija proteina u svim ispitivanim uzorcima. Koncentracija Ī± i Ī² globulina u krvnom serumu kretala se u okvirima fizioloÅ”kih granica. Može se zaključiti da prisustvo malih količina OA u hrani (5 ppm) poseduje moguće kumulativne ali ne i akutne efekte na proteine krvnog seruma brojlera koji zavise od vremena ekspozicije Å”tetnom dejstvu

    Antioxidative defense

    Get PDF
    Free radicals occur constantly during metabolism and take part in numerous physiological processes, such as: intra-cellular and inter-cellular signalization, gene expression, removal of damaged or senescent cells, and control of the tone of blood vessels. However, there is an increased quantity of free radicals in situations of so-called oxidative stress, when they cause serious damage to cellular membranes (peroxidation of their lipids, damage of membrane proteins, and similar), to interior cellular protein molecules, as well as DNA molecules and carbohydrates. This is precisely why the organism has developed numerous mechanisms for removing free radicals and/or preventing their production. Some of these are enzyme-related and include superoxide-dismutase, catalase, glutathione-peroxidase, and others. Other, non-enzyme mechanisms, imply antioxidative activities of vitamins E and C, provitamin A, coenzyme Q, reduced glutation, and others. Since free radicals can leave the cell that has produced them and become dispersed throughout the body, in addition to antioxidative defense that functions within cellular structures, antioxidant extra-cellular defense has also been developed. This is comprised by: transferrin, lactoferrin, haptoglobin, hemopexin, ceruloplasmin, albumins, extra-cellular isoform SOD, extracellular glutathione-peroxidase, glucose, bilirubin, urates, and many other molecules

    Physiology of free radicals

    Get PDF
    Free radicals imply that every atom, molecule, ion, group of atoms, or molecules with one or several non-paired electrons in outer orbital. Among these are: nitrogenoxide (NOā€¢), superoxide-anion-radical (O2ā€¢-), hydroxyl radical (OHā€¢), peroxyl radical (ROOā€¢), alcoxyl radical (ROā€¢) and hydroperoxyl radical (HO2ā€¢). However, reactive oxygen species also include components without non-paired electrons in outer orbital (so-called reactive non-radical agents), such as: singlet oxygen (1O2), peroxynitrite (ONOO-), hydrogen-peroxide (H2O2), hypochloric acid (eg. HOCl) and ozone (O3). High concentrations of free radicals lead to the development of oxidative stress which is a precondition for numerous pathological effects. However, low and moderate concentrations of these matter, which occur quite normally during cell metabolic activity, play multiple significant roles in many reactions. Some of these are: regulation of signal pathways within the cell and between cells, the role of chemoattractors and leukocyte activators, the role in phagocytosis, participation in maintaining, changes in the position and shape of the cell, assisting the cell during adaption and recovery from damage (e.g.caused by physical effort), the role in normal cell growth, programmed cell death (apoptosis) and cell ageing, in the synthesis of essential biological compounds and energy production, as well as the contribution to the regulation of the vascular tone, actually, tissue vascularization

    Apoptoza kao način prirodnog odumiranja ćelija jajnika

    Get PDF
    Different hormones, cytokines, the absence of growth factors, and others, are some of the signals for initiating apoptosis in ovarian cells. Each of them in its own way, trigger apoptosis as a form of death in which the cell actively participates by precisely implementing a genetically programmed sequence of biochemical and morphological changes which lead to selfdestruction. Apoptosis is a physiological form of death, which helps establish a dynamic balance among proiliferation, differenciation, and death of ovarian cells. It has been confirmed so far that follicular cells oocytes, cells of the germinal epithelium, theca cells, and corpus luteum cells die through apoptosis. The physiological deaths of these cells are an integral part of normal ovarian function, both during intrauterine and postnatal life. Namely, during intrauterine ovarian development, about half the total number of germinative cells (future oocytes) die through apoptosis and their population is gradually reduced after birth by so-called selection of follicles which will continue further growth (folliculogenesis) and the apoptosis of cells of those follicles which will be subjected to atresion. Most ovarian cells die by apoptosis continuously until the end of the reproductive life period of healthy females, and some can continue dieing in this way until the death of the given individual (e.g. germinal epithelium cells).Među signale za pokretanje apoptoze u ćelijama jajnika ubrajaju se razni hormoni, citokini, odsustvo faktora rasta i drugi. Svaki od njih, na svoj način, pokreće apoptozu kao oblik smrti u kome ćelija aktivno učestvuje tako Å”to precizno sprovodi genetski programiran sled biohemijskih i morfoloÅ”kih promena koje je vode u autodestrukciju. Apoptoza je fizioloÅ”ki oblik smrti pomoću kojeg se obezbeđuje uspostavljanje dinamičke ravnoteže između proliferacije, diferencijacije i odumiranja ćelija jajnika. Do sada je potvrđeno da u jajnicima apoptozom odumiru folikularne ćelije, ovociti ćelije klicinog epitela, ćelije teke i žutog tela. FizioloÅ”ka smrt ovih ćelija je sastavni deo normalne funkcije jajnika, kako tokom intrauterinog tako i za vreme postnatalnog života. Naime, tokom intrauterinog razvoja jajnika apoptozom odumre oko polovina od ukupnog broja germinativnih ćelija (budućih ovocita), a posle rođenja njihova populacija postepeno se smanjuje "odabirom folikula" koji će nastaviti dalji razvoj (folikulogeneza) i apoptotskim odumiranjem ćelija onih folikula koji će podleći atreziji. Većina ćelija jajnika odumire apoptozom kontinuirano do kraja reproduktivnog perioda života zdravih ženki, a neke mogu da odumiru, na ovaj način, sve do smrti jedinke (na primer ćelije klicinog epitela)

    Oxidative stress

    Get PDF
    The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others). There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others), a series of disorders is developed that are jointly called ā€žoxidative stress.ā€œ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

    Lipidni status trkačkih konja nakon fizičkog opterećenja različitog intenziteta i trajanja

    Get PDF
    The aim of this research was to determine the effects of physical activity on the lipid status in racehorses in a gallop race and a forty-kilometre endurance ride. Two groups of healthy 3-5-year-old full-blooded racehorses were assessed. The first one ran a 2 400-m gallop race, which is considered a short-lasting, intense physical activity; lipid status was assessed prior to, and 48 and 72 h after the race. The second group ran a forty-kilometre endurance ride, which is a long-lasting moderate physical activity; the lipid status was assessed immediately before, soon after and 48, 72, 96, 120 and 144 h after finishing the race. In intense physical activity the parameters of lipid status (total cholesterol, HDL cholesterol, LDL cholesterol, free cholesterol and triglycerides) remained stable at all times assessed in comparison with basal concentrations (p>0.05). Following the long-lasting moderate physical activity a slight, although statistically insignificant (p>0.05), increase in the concentrations of total cholesterol, HDL cholesterol, free cholesterol and LDL cholesterol was noticed immediately after the endurance ride in comparison to the values before the ride. By contrast, the concentration of LDL cholesterol increased immediately after the gallop race, which was followed by its significant decrease (p lt 0.05) 96, 120 and 144 h after the ride in comparison to the values both before and immediately after the ride. Unlike in the gallop race, immediately after the 40-km endurance ride there was a plummet in triglyceride concentration (p lt 0.01), but was followed by its statistically significant increase (p lt 0.05 and p lt 0.01) at all sampling times in comparison to the value on finishing the ride. In horses which ran the gallop race there was a high positive correlation between the concentrations of total cholesterol, HDL cholesterol and triglycerides before, 72 and 96 h after the race (r = 0.9278, p lt 0.001). In those which ran the endurance ride a high positive correlation between the concentrations of total cholesterol and HDL cholesterol was noticed on finishing the ride (r=0.7395 p lt 0.01), as well as at all sampling times which followed. In addition, there was a positive correlation between the concentrations of HDL cholesterol and LDL cholesterol 72 h (r=0.6843, p lt 0.01) after the ride. Aerobic exercise decreases the risk of cardiovascular diseases, partly because it is accompanied by the moderate increase in serum concentration of HDL cholesterol, decrease in total cholesterol, LDL cholesterol and triglycerides, which all result in the improvement in lipid profile in horses which completed the endurance ride.Cilj ovog rada je bio utvrđivanje efekata fizičkog opterećenja različitog intenziteta tokom galopske trke i endjurans trke, na lipidni status trkačkih konja. U ispitivanju su učestvovali zdravi punokrvni trkački konji, starosti 3-5 godina, podeljeni u dve grupe. Prva grupa trkačkih konja podvrgnuta je kratkotrajnom fizičkom opterećenju visokog intenziteta tokom galopske trke na 2400 m, i lipidni status je određivan pre učeŔća u trci, 48 h i 72 h posle istrčane trke. Druga grupa trkačkih konja podvrgnuta je prolongiranom fizičkom opterećenju niskog intenziteta tokom endjurans trke na 40km, a lipidni status je određivan pre učeŔća u trci, neposredno posle istrčane trke, 48 h, 72 h, 96 h, 120 h i 144 h posle istrčane trke. Kod fizičkog vežbanja visokog intenziteta parametri lipidnog statusa (ukupni holesterol, HDL-holesterol, LDL-holesterol, slobodni holesterol i trigliceridi) ostaju stabilni u svim ispitivanim vremenskim intervalima u odnosu na bazalne koncentracije (p>0,05). Nakon dugotrajnog fizičkog vežbanja niskog intenziteta uočen je blagi porast koncentracije ukupnog holesterola, HDL-holesterola, slobodnog holesterola i LDL-holesterola odmah nakon endjurans trke na 40km u odnosu na vrednosti pre trke, mada dobijeni rezultati nisu pokazali statističku značajnost (p>0,05). Nasuprot njima, koncentracija LDL-holesterola se povećala neposredno nakon trke, a potom se statistički značajano smanjivala u uzorcima uzetim 96 h, 120 h i 144 h nakon trke u odnosu na vrednost pre trke i neposredno nakon trke (p lt 0,05). Za razliku od galopske trke, neposredno nakon endjurans trke na 40 km doÅ”lo je do naglog statistički značajnog pada koncentracije triglicerida (p lt 0,01), a potom je u svim narednim ispitivanim vremenskim intervalima dokazan njihov statistički značajan porast (p lt 0,05 i p lt 0,01) u odnosu na vrednosti triglicerida neposredno nakon trke. Kod galopske trke ustanovljena je međusobna visoka pozitivna korelacija između koncentracije ukupnog holesterola, koncentracije HDL-holesterola i koncentracije triglicerida pre, 72 h i 96 h posle trke (r = 0,9278, p lt 0,001). Kod endjurans trke ustanovljena je medjusobna visoka pozitivna korelacija između koncentracije ukupnog holesterola i HDL-holesterola neposredno nakon trke (r = 0,7395, p lt 0,01), kao i u svim ispitivanim vremenskim intervalima posle endjurans trke. Dokazana je i pozitivna korelacija između koncentracije HDL- holesterola i LDL-holesterola 72 h (r = 0,6843, p lt 0,01) nakon trke. Aerobnim vežbanjem se smanjenje rizik od razvoja kardiovaskularnih bolesti, delimično usled pratećeg umerenog povećanja serumske koncentracije HDL-holesterola uz redukciju ukupnog holesterola, LDL-holesterola i triglicerida, Å”to sve zajedno rezultira poboljÅ”anjem lipidnog profila krvi konja koji su trčali endjurans trku

    Antioksidativna odbrana

    Get PDF
    Free radicals occur constantly during metabolism and take part in numerous physiological processes, such as: intra-cellular and inter-cellular signalization, gene expression, removal of damaged or senescent cells, and control of the tone of blood vessels. However, there is an increased quantity of free radicals in situations of so-called oxidative stress, when they cause serious damage to cellular membranes (peroxidation of their lipids, damage of membrane proteins, and similar), to interior cellular protein molecules, as well as DNA molecules and carbohydrates. This is precisely why the organism has developed numerous mechanisms for removing free radicals and/or preventing their production. Some of these are enzyme-related and include superoxide-dismutase, catalase, glutathione-peroxidase, and others. Other, non-enzyme mechanisms, imply antioxidative activities of vitamins E and C, provitamin A, coenzyme Q, reduced glutation, and others. Since free radicals can leave the cell that has produced them and become dispersed throughout the body, in addition to antioxidative defense that functions within cellular structures, antioxidant extra-cellular defense has also been developed. This is comprised by: transferrin, lactoferrin, haptoglobin, hemopexin, ceruloplasmin, albumins, extra-cellular isoform SOD, extracellular glutathione-peroxidase, glucose, bilirubin, urates, and many other molecules.Slobodni radikali neprekidno nastaju tokom metabolizma i učestvuju u brojnim fizioloÅ”kim procesima, kao Å”to su: unutarćelijska i međućelijska signalizacija, genska ekspresija, uklanjanje oÅ”tećenih i ostarelih ćelija i kontrola tonusa krvnih sudova. Međutim, količina slobodnih radikala je pojačana u stanju tzv. oksidativnog stresa, kada izazivaju ozbiljna oÅ”tećenja ćelijskih membrana (peroksidaciju njihovih lipida, oÅ”tećenje membranskih proteina i sl.), unutarćelijskih proteinskih molekula, kao i molekula DNA i ugljenih hidrata. Upravo zbog toga, organizam ima razvijene brojne mehanizme za uklanjanje slobodnih radikala i/ili sprečavanje njihove proizvodnje. Neki od njih su enzimski a obuhvataju superoksid-dismutazu, katalazu, glutation-peroksidaze i sl. Drugi, neenzimski mehanizmi, podrazumevaju antioksidativno delovanje vitamina E i C, provitamina A, koenzima Q, redukovanog glutationa i dr. S obzirom da slobodni radikali mogu da napuste ćeliju koja ih je proizvela i raznesu se po telu, osim antioksidativne odbrane koja funkcioniÅ”e unutar ćelijskih struktura razvila se i vanćelijska odbrana antioksidanasa. Nju obavljaju: transferin, lakroferin, haptoglobin, hemopeksin, ceruloplazmin, albumini, ekstracelularna izoforma SOD, ekstracelularna glutation-peroksidaza, glukoza, bilirubin, urati i mnogi drugi molekuli

    Fiziologija slobodnih radikala

    Get PDF
    Free radicals imply that every atom, molecule, ion, group of atoms, or molecules with one or several non-paired electrons in outer orbital. Among these are: nitrogenoxide (NOā€¢), superoxide-anion-radical (O2ā€¢-), hydroxyl radical (OHā€¢), peroxyl radical (ROOā€¢), alcoxyl radical (ROā€¢) and hydroperoxyl radical (HO2ā€¢). However, reactive oxygen species also include components without non-paired electrons in outer orbital (so-called reactive non-radical agents), such as: singlet oxygen (1O2), peroxynitrite (ONOO-), hydrogen-peroxide (H2O2), hypochloric acid (eg. HOCl) and ozone (O3). High concentrations of free radicals lead to the development of oxidative stress which is a precondition for numerous pathological effects. However, low and moderate concentrations of these matter, which occur quite normally during cell metabolic activity, play multiple significant roles in many reactions. Some of these are: regulation of signal pathways within the cell and between cells, the role of chemoattractors and leukocyte activators, the role in phagocytosis, participation in maintaining, changes in the position and shape of the cell, assisting the cell during adaption and recovery from damage (e.g.caused by physical effort), the role in normal cell growth, programmed cell death (apoptosis) and cell ageing, in the synthesis of essential biological compounds and energy production, as well as the contribution to the regulation of the vascular tone, actually, tissue vascularization.Slobodni radikali podrazumevaju svaki atom, molekul, jon, grupu atoma ili molekula sa jednim ili viÅ”e nesparenih elektrona u spoljaÅ”njoj orbtali. U njih spadaju: azot-oksid (NOā€¢), superoksid anjon radikal (O2ā€¢-), hidroksilni radikal (OHā€¢), peroksilni radikal (ROOā€¢), alkoksilni radikal (ROā€¢) i hidroperoksilni radikal (HO2ā€¢-). Međutim, u reaktivne kiseonične vrste ubrajamo i komponente bez nesparenih elektrona u spoljaÅ”njoj orbitali (tzv. reaktivni neradikalski agensi), kao Å”to su: singlet kiseonik (1O2), peroksinitrit (ONOO-), vodonik-peroksid (H2O2), hipohlorasta kiselina (npr. HOCl) i ozon (O3). Visoke koncentracije slobodnih radikala izazivaju oksidativni stres koji je preduslov mnogobrojnih patoloÅ”kih efekata. Međutim, niske i umerene koncentracije ovih materija, koje nastaju sasvim normalno tokom metaboličke aktivnosti ćelije, igraju viÅ”estuke značajne uloge u mnogim reakcijama. Neke od njih su: regulacija signalnih puteva unutar ćelije i među ćelijama, uloga hemoatraktanata i aktivatora leukocita, uloga u fagocitozi, učeŔće u održavanju, promeni položaja i oblika ćelije, pomoć ćeliji tokom adaptacije i oporavka od oÅ”tećenja (npr. izazvanih fizičkim radom), uloga u normalnom ćelijskom rastu, programiranoj ćelijskoj smrti (apoptozi) i ćelijskom starenju, u sintezi esencijalnih bioloÅ”kih jedinjenja i proizvodnji energije, kao i doprinos regulaciji vaskularnog tonusa, odnosno vaskularizacije tkiva

    Citogenetička analiza ćelija kostne srži pacova tretiranih toluenom

    Get PDF
    The paper presents the results of investigations of the effect of toluene on bone marrow cells of female Wistar rats treated intraperitoneally with toluene for 8 or 11 days, in doses of 0.602 Ī¼g/200 g body mass. Cytogenetic analyses were performed on the metaphase figure of chromosomes in order to determine the frequency of structural aberrations ā€“ breaks and gaps. The values of the mitotic index and number of poliploid cells were determined. No significant increase was determined in the frequency of breaks and gaps in chromosomes of treated animals in comparison with the controls, which means that, under the experimental conditions, toluene did not exhibit a definite genotoxic effect. However, it has been determined that there was a significant increase in the value of the mitotic index, as well as a significant increase in the number of poliploid cells in both groups of treated rats in comparison with controls.U ovom radu su navedeni rezultati ispitivanja efekata toluena na ćelije kostne srži ženki Wistar pacova, koji su intraperitonealno dobijali toluen tokom 8 i 11 dana, u dozi od 0.602 Ī¼g /200 g telesne mase. Citogenetički su analizirane metafazne figure hromozoma da bi se utvrdila učestalost pojavljivanja strukturnih aberacija ā€“ prekida i gapova. Utvrđene su vrednosti mitotskog indeksa i broja poliploidnih ćelija. Nije ustanovljeno značajno povećanje učestalosti pojavljivanja prekida i gapova na hromozomima tretiranih jedinki u odnosu na kontrole, Å”to znači da u uslovima ovog eksperimenta toluen nije iskazao nesumnjiv genotoksični efekat. Međutim ustanovljeno je značajno povećanje vrednosti mitotskog indeksa, kao i značajno povećanje broja poliploidnih ćelija u obe grupe tretiranih pacova u odnosu na kontrole
    corecore