1,569 research outputs found

    Estimating Mutual Information

    Get PDF
    We present two classes of improved estimators for mutual information M(X,Y)M(X,Y), from samples of random points distributed according to some joint probability density μ(x,y)\mu(x,y). In contrast to conventional estimators based on binnings, they are based on entropy estimates from kk-nearest neighbour distances. This means that they are data efficient (with k=1k=1 we resolve structures down to the smallest possible scales), adaptive (the resolution is higher where data are more numerous), and have minimal bias. Indeed, the bias of the underlying entropy estimates is mainly due to non-uniformity of the density at the smallest resolved scale, giving typically systematic errors which scale as functions of k/Nk/N for NN points. Numerically, we find that both families become {\it exact} for independent distributions, i.e. the estimator M^(X,Y)\hat M(X,Y) vanishes (up to statistical fluctuations) if μ(x,y)=μ(x)μ(y)\mu(x,y) = \mu(x) \mu(y). This holds for all tested marginal distributions and for all dimensions of xx and yy. In addition, we give estimators for redundancies between more than 2 random variables. We compare our algorithms in detail with existing algorithms. Finally, we demonstrate the usefulness of our estimators for assessing the actual independence of components obtained from independent component analysis (ICA), for improving ICA, and for estimating the reliability of blind source separation.Comment: 16 pages, including 18 figure

    Complementarity in classical dynamical systems

    Full text link
    The concept of complementarity, originally defined for non-commuting observables of quantum systems with states of non-vanishing dispersion, is extended to classical dynamical systems with a partitioned phase space. Interpreting partitions in terms of ensembles of epistemic states (symbols) with corresponding classical observables, it is shown that such observables are complementary to each other with respect to particular partitions unless those partitions are generating. This explains why symbolic descriptions based on an \emph{ad hoc} partition of an underlying phase space description should generally be expected to be incompatible. Related approaches with different background and different objectives are discussed.Comment: 18 pages, no figure

    Telepresence and the Role of the Senses

    Get PDF
    The telepresence experience can be evoked in a number of ways. A well-known example is a player of videogames who reports about a telepresence experience, a subjective experience of being in one place or environment, even when physically situated in another place. In this paper we set the phenomenon of telepresence into a theoretical framework. As people react subjectively to stimuli from telepresence, empirical studies can give more evidence about the phenomenon. Thus, our contribution is to bridge the theoretical with the empirical. We discuss theories of perception with an emphasis on Heidegger, Merleau-Ponty and Gibson, the role of the senses and the Spinozian belief procedure. The aim is to contribute to our understanding of this phenomenon. A telepresence-study that included the affordance concept is used to empirically study how players report sense-reactions to virtual sightseeing in two cities. We investigate and explore the interplay of the philosophical and the empirical. The findings indicate that it is not only the visual sense that plays a role in this experience, but all senses

    Decisional Conflict and User Acceptance of Multicriteria Decision-Making Aids *

    Full text link
    Despite the development of increasingly sophisticated and refined multicriteria decision-making (MCDM) methods, an examination of the experimental evidence indicates that users most often prefer relatively unsophisticated methods. In this paper, we synthesize theories and empirical findings from the psychology of judgment and choice to provide a new theoretical explanation for such user preferences. Our argument centers on the assertion that the MCDM method preferred by decision makers is a function of the degree to which the method tends to introduce decisional conflict. The model we develop relates response mode, decision strategy, and the salience of decisional conflict to user preferences among decision aids. We then show that the model is consistent with empirical results in MCDM studies. Next, the role of decisional conflict in problem formulation aids is briefly discussed. Finally, we outline future research needed to thoroughly test the theoretical mechanisms we have proposed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73461/1/j.1540-5915.1991.tb00371.x.pd

    Determining and interpreting correlations in lipidomic networks found in glioblastoma cells

    Get PDF
    Background: Intelligent and multitiered quantitative analysis of biological systems rapidly evolves to a key technique in studying biomolecular cancer aspects. Newly emerging advances in both measurement as well as bio-inspired computational techniques have facilitated the development of lipidomics technologies and offer an excellent opportunity to understand regulation at the molecular level in many diseases. Results: We present computational approaches to study the response of glioblastoma U87 cells to gene- and chemo-therapy. To identify distinct biomarkers and differences in therapeutic outcomes, we develop a novel technique based on graph-clustering. This technique facilitates the exploration and visualization of co-regulations in glioblastoma lipid profiling data. We investigate the changes in the correlation networks for different therapies and study the success of novel gene therapies targeting aggressive glioblastoma. Conclusions: The novel computational paradigm provides unique “fingerprints” by revealing the intricate interactions at the lipidome level in glioblastoma U87 cells with induced apoptosis (programmed cell death) and thus opens a new window to biomedical frontiers. Background Glioblastoma are highly invasive brain tumors. Th

    Protons in near earth orbit

    Get PDF
    The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is parameterized by a power law. Below the geomagnetic cutoff a substantial second spectrum was observed concentrated at equatorial latitudes with a flux ~ 70 m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure

    Search for antihelium in cosmic rays

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320 and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure

    Study of Z Boson Pair Production in e+e- Collisions at LEP at \sqrt{s}=189 GeV

    Full text link
    The pair production of Z bosons is studied using the data collected by the L3 detector at LEP in 1998 in e+e- collisions at a centre-of-mass energy of 189 GeV. All the visible final states are considered and the cross section of this process is measured to be 0.74 +0.15 -0.14 (stat.) +/- 0.04 (syst.) pb. Final states containing b quarks are enhanced by a dedicated selection and their production cross section is found to be 0.18 +0.09 -0.07 (stat.) +/- 0.02 (syst.) pb. Both results are in agreement with the Standard Model predictions. Limits on anomalous couplings between neutral gauge bosons are derived from these measurements

    A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01

    Get PDF
    The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics experiment that will study cosmic rays in the 100MeV\sim 100 \mathrm{MeV} to 1TeV1 \mathrm{TeV} range and will be installed on the International Space Station (ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected 10810^8 cosmic ray triggers. Part of the \emph{Mir} space station was within the AMS-01 field of view during the four day \emph{Mir} docking phase of this flight. We have reconstructed an image of this part of the \emph{Mir} space station using secondary π\pi^- and μ\mu^- emissions from primary cosmic rays interacting with \emph{Mir}. This is the first time this reconstruction was performed in AMS-01, and it is important for understanding potential backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor stylistic and grammer change

    Search for Branons at LEP

    Full text link
    We search, in the context of extra-dimension scenarios, for the possible existence of brane fluctuations, called branons. Events with a single photon or a single Z-boson and missing energy and momentum collected with the L3 detector in e^+ e^- collisions at centre-of-mass energies sqrt{s}=189-209$ GeV are analysed. No excess over the Standard Model expectations is found and a lower limit at 95% confidence level of 103 GeV is derived for the mass of branons, for a scenario with small brane tensions. Alternatively, under the assumption of a light branon, brane tensions below 180 GeV are excluded
    corecore