3 research outputs found

    Mapping the landscape of metabolic goals of a cell

    Get PDF
    Genome-scale flux balance models of metabolism provide testable predictions of all metabolic rates in an organism, by assuming that the cell is optimizing a metabolic goal known as the objective function. We introduce an efficient inverse flux balance analysis (invFBA) approach, based on linear programming duality, to characterize the space of possible objective functions compatible with measured fluxes. After testing our algorithm on simulated E. coli data and time-dependent S. oneidensis fluxes inferred from gene expression, we apply our inverse approach to flux measurements in long-term evolved E. coli strains, revealing objective functions that provide insight into metabolic adaptation trajectories.MURI W911NF-12-1-0390 - Army Research Office (US); MURI W911NF-12-1-0390 - Army Research Office (US); 5R01GM089978-02 - National Institutes of Health (US); IIS-1237022 - National Science Foundation (US); DE-SC0012627 - U.S. Department of Energy; HR0011-15-C-0091 - Defense Sciences Office, DARPA; National Institutes of Health; R01GM103502; 5R01DE024468; 1457695 - National Science Foundatio

    Coordinated regulation of acid resistance in Escherichia coli

    No full text
    corecore