19 research outputs found
Recommended from our members
Position measurements for the isotope production facility and the switchyard kicker upgrade projects
The Los Alamos Neutron Science Center (LANSCE) is installing two beam lines to both improve operational tuning and provide new capabilities within the facility. The Isotope Production Facility (IPF) will provide isotopes for medical purposes by using the H' beam spur at 100 MeV and the Switchyard Kicker Upgrade (SYK) will allow the LANSCE 800-MeV H beam to be rapidly switched between various beam lines within the facility. The beam position measurements for both of these beam lines uses a standard micro-stripline beam position monitor (BPM) with both a 50-mm and 75-mm radius. The cable plant is unique in that it unambiguously provides a method of verifying the operation of the complete position measurement. The processing electronics module uses a log ratio technique with error corrections such that it has a dynamic range of -12 dBm to -85 dBm with errors less than 0.15 dB within this range. This paper will describe the primary components of these measurement systems and provide initial data of their operation
Recommended from our members
BEAM-PROFILE INSTRUMENTATION FOR BEAM-HALO MEASUREMENT : OVERALL DESCRIPTION, OPERATION, AND BEAM DATA.
The halo experiment presently being conducted at the Low Energy Demonstration Accelerator (LEDA) at Los Alamos National Laboratory (LANL) has specific instruments that acquire horizontally and vertically projected particle-density beam distributions out to greater than 10{sup 5}:1 dynamic range. They measure the core of the distributions using traditional wire scanners, and the tails of the distribution using water-cooled graphite scraping devices. The wire scanner and halo scrapers are mounted on the same moving frame whose location is controlled with stepper motors. A sequence within the Experimental Physics and Industrial Control System (EPICS) software communicates with a National Instrument LabVIEW virtual instrument to control the motion and location of the scanner/scraper assembly. Secondary electrons from the wire scanner 0.03-mm carbon wire and protons impinging on the scraper are both detected with a lossy-integrator electronic circuit. Algorithms implemented within EPICS and in Research Systems Interactive Data Langugage (IDL) subroutines analyse and plot the acquired distributions. This paper describes this beam profile instrument, describes their experience with its operation, compares acquired profile data with simulations, and discusses various beam profile phenomena specific to the halo experiment
Recommended from our members
BEAM-PROFILE INSTRUMENTATION FOR BEAM-HALO MEASUREMENT : OVERALL DESCRIPTION AND OPERATION
Within the halo experiment presently being conducted at the Low Energy Demonstration Accelerator at Los Alamos National Laboratory, specific beam instruments that acquire horizontally and vertically projected particle-density distributions out to greater than 10{sup 5}:1 dynamic range are located throught the 52-magnet halo lattice
Recommended from our members
Newly designed field control module for the SNS
The low-level RF (LLRF) control system for the Spallation Neutron Source has undergone some recent hardware changes. The intended Field and Resonance Control Module (FRCM) design has been re-vamped to minimize functionality and ease implementation. This effort spans a variety of disciplines, and requires parallel development with distinct interface controls. This paper will discuss the platform chosen, the design requirements that will be met, and the parallel development efforts ongoing
Recommended from our members
EXPERIENCE WITH THE LOW ENERGY DEMONSTRATION ACCELERATOR (LEDA) HALO EXPERIMENT BEAM INSTRUMENTATION
A 52 quadrupole-magnet FODO lattice has been assembled and operated at the Los Alamos National Laboratory. The purpose of this lattice is to provide a platform to measure the resulting beam halo as the first few magnets of the lattice produce various mismatch conditions. These data are then compared with particle simulation so that halo formation mechanisms may be better understood. The lattice is appended to the LEDA 6.7-MeV radio frequency quadrupole (RFQ) and is followed by a short high-energy beam transport (HEBT) that safely dumps the beam into a 670-kW beam stop
Precise olfactory responses tile the sniff cycle
In terrestrial vertebrates, sniffing controls odorant access to receptors, and therefore sets the timescale of olfactory stimuli. We found that odorants evoked precisely sniff-locked activity in mitral/tufted cells in the olfactory bulb of awake mouse. The trial-to-trial response jitter averaged 12 ms, a precision comparable to other sensory systems. Individual cells expressed odor-specific temporal patterns of activity and, across the population, onset times tiled the duration of the sniff cycle. Responses were more tightly time-locked to the sniff phase than to the time after inhalation onset. The spikes of single neurons carried sufficient information to discriminate odors. In addition, precise locking to sniff phase may facilitate ensemble coding by making synchrony relationships across neurons robust to variation in sniff rate. The temporal specificity of mitral/tufted cell output provides a potentially rich source of information for downstream olfactory areas