36 research outputs found
Percutaneous Catheter Ablation of Epicardial Accessory Pathways.
Radiofrequency (RF) catheter ablation is the treatment of choice in patients with accessory pathways (APs) and Wolff-Parkinson-White syndrome. Endocardial catheter ablation has limitations, including the inability to map and ablate intramural or subepicardial APs. Some of these difficulties can be overcome using an epicardial approach performed through the epicardial venous system or by percutaneous catheterisation of the pericardial space. When a suspected left inferior or infero-paraseptal AP is refractory to ablation or no early activation is found at the endocardium, a transvenous approach via the coronary sinus is warranted because such epicardial pathways can be in close proximity to the coronary venous system. Associated congenital abnormalities, such as right atrial appendage, right ventricle diverticulum, coronary sinus diverticulum and absence of coronary sinus ostium, may also hamper a successful outcome. Percutaneous epicardial subxiphoid approach should be considered when endocardial or transvenous mapping and ablation fails. Epicardial mapping may be successful. It can guide and enhance the effectiveness of endocardial ablation. The finding of no epicardial early activation leads to a more persistent new endocardial attempt. When both endocardial and epicardial ablation are unsuccessful, open-chest surgery is the only option to eliminate the AP.info:eu-repo/semantics/publishedVersio
Unusual source of tachycardia in an adolescent
Mahaim fiber tachycardia is an uncommon cause of palpitations among the pediatric population. This case report describes an adolescent female who presented with recurrent episodes of tachycardia with chest pain and dizziness. Her ECG showed tachycardia with wide QRS complexes and left bundle branch block pattern. Repeat ECG after adenosine treatment revealed sinus rhythm with persistence of the left bundle branch block pattern. Metoprolol was started however she continued to have episodes of sustained tachycardia
Bigeminy and the bifid papillary muscle
Various structural anomalies of the left ventricular papillary muscles have been observed in recent years. Many of these have been linked to electrocardiographic aberrations
Recommended from our members
European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases.
European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases.
Genetic testing has advanced significantly since the publication of the 2011 HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies.1 In addition to single-gene testing, there is now the ability to perform whole-exome sequencing (WES) and whole-genome sequencing (WGS). There is growing appreciation of oligogenic disorders,2,3 the role of modifier genes,2 and the use of genetic testing for risk stratification, even in common cardiac diseases such as coronary artery disease or atrial fibrillation (AFib), including a proposal for a score awaiting validation.4 This document reviews the state of genetic testing at the present time, and addresses the questions of what tests to perform and when to perform them. It should be noted that, as articulated in a 1999 Task Force Document by the European Society of Cardiology (ESC) on the legal value of medical guidelines,5 ‘The guidelines from an international organization, such as the ESC, have no specific legal territory and have no legally enforcing character. Nonetheless, in so far as they represent the state-of-the-art, they may be used as indicating deviation from evidence-based medicine in cases of questioned liability’. In the case of potentially lethal and treatable conditions such as catecholaminergic polymorphic ventricular tachycardia (CPVT) or long QT syndrome (LQTS), it is the responsibility of the physician, preferably in conjunction with an expert genetics team, to communicate to the patient/family the critical importance of family screening, whether this be facilitated by cascade genetic testing or by broader clinical family screenin