67 research outputs found

    Theory of the tunneling resonances of the bilayer electron systems in strong magnetic field

    Full text link
    We develop a theory for the anomalous interlayer conductance peaks observed in bilayer electron systems at nu=1. Our model shows the that the size of the peak at zero bias decreases rapidly with increasing in-plane magnetic field, but its location is unchanged. The I-V characteristic is linear at small voltages, in agreement with experimental observations. In addition we make quantitative predictions for how the inter-layer conductance peaks vary in position with in-plane magnetic field at high voltages. Finally, we predict novel bi-stable behavior at intermediate voltages.Comment: 5 pages, 2 figure

    Effect of Subband Landau Level Coupling to the Linearly Dispersing Collective Mode in a Quantum Hall Ferromagnet

    Full text link
    In a recent experiment (Phys. Rev. Lett. {\bf 87}, 036903 (2001)), Spielman et al observed a linearly dispersing collective mode in quantum Hall ferromagnet. While it qualitatively agrees with the Goldstone mode dispersion at small wave vector, the experimental mode velocity is slower than that calculated by previous theories by a factor about 0.55. A better agreement with the experimental data may possibly be achieved by taking the subband Landau level coupling into account due to the finiteness of the layer thickness. A novel coupling of quantum fluctuation to the tunneling is briefly discussed.Comment: 4 pages; published versio

    A dc voltage step-up transformer based on a bi-layer \nu=1 quantum Hall system

    Full text link
    A bilayer electron system in a strong magnetic field at low temperatures, with total Landau level filling factor nu =1, can enter a strongly coupled phase, known as the (111) phase or the quantum Hall pseudospin-ferromagnet. In this phase there is a large quantized Hall drag resistivity between the layers. We consider here structures where regions of (111) phase are separated by regions in which one of the layers is depleted by means of a gate, and various of the regions are connected together by wired contacts. We note that with suitable designs, one can create a DC step-up transformer where the output voltage is larger than the input, and we show how to analyze the current flows and voltages in such devices

    Global phase diagram of bilayer quantum Hall ferromagnets

    Full text link
    We present a microscopic study of the interlayer spacing d versus in-plane magnetic field BB_\parallel phase diagram for bilayer quantum Hall (QH) pseudo-ferromagnets. In addition to the interlayer charge balanced commensurate and incommensurate states analyzed previously, we address the corresponding interlayer charge unbalanced "canted" QH states. We predict a large anomaly in the bilayer capacitance at the canting transition and the formation of dipole stripe domains with periods exceeding 1 micron in the canted state.Comment: 4 RevTeX pgs, 2 eps figures, submitted to PR

    Bias-voltage induced phase-transition in bilayer quantum Hall ferromagnets

    Full text link
    We consider bilayer quantum Hall systems at total filling factor ν=1\nu=1 in presence of a bias voltage Δv\Delta_v which leads to different filling factors in each layer. We use auxiliary field functional integral approach to study mean-field solutions and collective excitations around them. We find that at large layer separation, the collective excitations soften at a finite wave vector leading to the collapse of quasiparticle gap. Our calculations predict that as the bias voltage is increased, bilayer systems undergo a phase transition from a compressible state to a ν=1\nu=1 phase-coherent state {\it with charge imbalance}. We present simple analytical expressions for bias-dependent renormalized charge imbalance and pseudospin stiffness which are sensitive to the softening of collective modes.Comment: 12 pages, 5 figures. Minor changes, one reference adde

    Solitons in polarized double layer quantum Hall systems

    Full text link
    A new manifestation of interlayer coherence in strongly polarized double layer quantum Hall systems with total filling factor ν=1\nu=1 in the presence of a small or zero tunneling is theoretically predicted. It is shown that moving (for small tunneling) and spatially localized (for zero tunneling) stable pseudospin solitons develop which could be interpreted as mobile or static charge-density excitations. The possibility of their experimental observation is also discussed.Comment: Phys. Rev. B (accepted

    Quantum-Hall Quantum-Bits

    Get PDF
    Bilayer quantum Hall systems can form collective states in which electrons exhibit spontaneous interlayer phase coherence. We discuss the possibility of using bilayer quantum dot many-electron states with this property to create two-level systems that have potential advantages as quantum bits.Comment: 4 pages, 4 figures included, version to appear in Phys. Rev. B (Rapid Communications

    Correlation induced phonon softening in low density coupled bilayer systems

    Full text link
    We predict a possible phonon softening instability in strongly correlated coupled semiconductor bilayer systems. By studying the plasmon-phonon coupling in coupled bilayer structures, we find that the renormalized acoustic phonon frequency may be softened at a finite wave vector due to many-body local field corrections, particularly in low density systems where correlation effects are strong. We discuss experimental possibilities to search for this predicted phonon softening phenomenon.Comment: 4 pages with 2 figure

    Critical Currents of Ideal Quantum Hall Superfluids

    Full text link
    Filling factor ν=1\nu=1 bilayer electron systems in the quantum Hall regime have an excitonic-condensate superfluid ground state when the layer separation dd is less than a critical value dcd_c. On a quantum Hall plateau current injected and removed through one of the two layers drives a dissipationless edge current that carries parallel currents, and a dissipationless bulk supercurrent that carries opposing currents in the two layers. In this paper we discuss the theory of finite supercurrent bilayer states, both in the presence and in the absence of symmetry breaking inter-layer hybridization. Solutions to the microscopic mean-field equations exist at all condensate phase winding rates for zero and sufficiently weak hybridization strengths. We find, however, that collective instabilities occur when the supercurrent exceeds a critical value determined primarily by a competition between direct and exchange inter-layer Coulomb interactions. The critical current is estimated using a local stability criterion and varies as (dcd)1/2(d_c-d)^{1/2} when dd approaches dcd_c from below. For large inter-layer hybridization, we find that the critical current is limited by a soliton instability of microscopic origin.Comment: 18 RevTeX pgs, 21 eps figure

    Broken-Symmetry States in Quantum Hall Superlattices

    Full text link
    We argue that broken-symmetry states with either spatially diagonal or spatially off-diagonal order are likely in the quantum Hall regime, for clean multiple quantum well (MQW) systems with small layer separations. We find that for MQW systems, unlike bilayers, charge order tends to be favored over spontaneous interlayer coherence. We estimate the size of the interlayer tunneling amplitude needed to stabilize superlattice Bloch minibands by comparing the variational energies of interlayer-coherent superlattice miniband states with those of states with charge order and states with no broken symmetries. We predict that when coherent miniband ground states are stable, strong interlayer electronic correlations will strongly enhance the growth-direction tunneling conductance and promote the possibility of Bloch oscillations.Comment: 9 pages LaTeX, 4 figures EPS, to be published in PR
    corecore