1,055 research outputs found
Anti-nausea effects and pharmacokinetics of ondansetron, maropitant and metoclopramide in a low-dose cisplatin model of nausea and vomiting in the dog: a blinded crossover study
Nausea is a subjective sensation which is difficult to measure in non-verbal species. The aims of this study were to determine the efficacy of three classes of antiemetic drugs in a novel low dose cisplatin model of nausea and vomiting and measure change in potential nausea biomarkers arginine vasopressin (AVP) and cortisol. A four period cross-over blinded study was conducted in eight healthy beagle dogs of both genders. Dogs were administered 18 mg/m2 cisplatin intravenously, followed 45 min later by a 15 min infusion of either placebo (saline) or antiemetic treatment with ondansetron (0.5 mg/kg; 5-HT3 antagonist), maropitant (1 mg/kg; NK1 antagonist) or metoclopramide (0.5 mg/kg; D2 antagonist). The number of vomits and nausea associated behaviours, scored on a visual analogue scale, were recorded every 15 min for 8 h following cisplatin administration. Plasma samples were collected to measure AVP, cortisol and antiemetic drug concentrations
Unicircular structure of the Brassica hirta mitochondrial genome
Restriction mapping studies reveal that the mitochondrial genome of white mustard ( Brassica hirta ) exists in the form of a single circular 208 kb chromosome. The B. hirta genome has only one copy of the two sequences which, in several related Brassica species, are duplicated and undergo intramolecular recombination. This first report of a plant mitochondrial DNA that does not exist in a multipartite structure indicates that high frequency intramolecular recombination is not an obligatory feature of plant mitochondrial genomes. Heterologous filter hybridizatios reveal that the mitochondrial genomes of B. hirta and B. campestris have diverged radically in sequence arrangement, as the result of approximately 10 large inversions. At the same time, however, the two genomes are similar in size, sequence content, and primary sequence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46962/1/294_2004_Article_BF00384620.pd
Local Thermometry of Neutral Modes on the Quantum Hall Edge
A system of electrons in two dimensions and strong magnetic fields can be
tuned to create a gapped 2D system with one dimensional channels along the
edge. Interactions among these edge modes can lead to independent transport of
charge and heat, even in opposite directions. Measuring the chirality and
transport properties of these charge and heat modes can reveal otherwise hidden
structure in the edge. Here, we heat the outer edge of such a quantum Hall
system using a quantum point contact. By placing quantum dots upstream and
downstream along the edge of the heater, we can measure both the chemical
potential and temperature of that edge to study charge and heat transport,
respectively. We find that charge is transported exclusively downstream, but
heat can be transported upstream when the edge has additional structure related
to fractional quantum Hall physics.Comment: 24 pages, 18 figure
Imaging Coulomb Islands in a Quantum Hall Interferometer
In the Quantum Hall regime, near integer filling factors, electrons should
only be transmitted through spatially-separated edge states. However, in
mesoscopic systems, electronic transmission turns out to be more complex,
giving rise to a large spectrum of magnetoresistance oscillations. To explain
these observations, recent models put forward that, as edge states come close
to each other, electrons can hop between counterpropagating edge channels, or
tunnel through Coulomb islands. Here, we use scanning gate microscopy to
demonstrate the presence of quantum Hall Coulomb islands, and reveal the
spatial structure of transport inside a quantum Hall interferometer. Electron
islands locations are found by modulating the tunneling between edge states and
confined electron orbits. Tuning the magnetic field, we unveil a continuous
evolution of active electron islands. This allows to decrypt the complexity of
high magnetic field magnetoresistance oscillations, and opens the way to
further local scale manipulations of quantum Hall localized states
Location, identity, amount and serial entry of chloroplast DNA sequences in crucifer mitochondrial DNAs
Southern blot hybridization techniques were used to examine the chloroplast DNA (cpDNA) sequences present in the mitochondrial DNAs (mtDNAs) of two Brassica species ( B. campestris and B. hirta ), two closely related species belonging to the same tribe as Brassica (Raphanus sativa, Crambe abyssinica) , and two more distantly related species of crucifers (Arabidopsis thaliana, Capsella bursa-pastoris) . The two Brassica species and R. sativa contain roughly equal amounts (12–14 kb) of cpDNA sequences integrated within their 208–242 kb mtDNAs. Furthermore, the 11 identified regions of transferred DNA, which include the 5′ end of the chloroplast psa A gene and the central segment of rpo B, have the same mtDNA locations in these three species. Crambe abyssinica mtDNA has the same complement of cpDNA sequences, plus an additional major region of cpDNA sequence similarity which includes the 16S rRNA gene. Therefore, except for the more recently arrived 16S rRNA gene, all of these cpDNA sequences appear to have entered the mitochondrial genome in the common ancestor of these three genera. The mitochondrial genomes of A. thaliana and Capsella bursa-pastoris contain significantly less cpDNA (5–7 kb) than the four other mtDNAs. However, certain cpDNA sequences, including the central portion of the rbc L gene and the 3′ end of the psa A gene, are shared by all six crucifer mtDNAs and appear to have been transferred in a common ancestor of the crucifer family over 30 million years ago. 1n conclusion, DNA has been transferred sequentially from the chloroplast to the mitochondrion during crucifer evolution and these cpDNA sequences can persist in the mitochondrial genome over long periods of evolutionary time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46968/1/294_2004_Article_BF00521276.pd
Species Doublers as Super Multiplets in Lattice Supersymmetry: Exact Supersymmetry with Interactions for D=1 N=2
We propose a new lattice superfield formalism in momentum representation
which accommodates species doublers of the lattice fermions and their bosonic
counterparts as super multiplets. We explicitly show that one dimensional N=2
model with interactions has exact Lie algebraic supersymmetry on the lattice
for all super charges. In coordinate representation the finite difference
operator is made to satisfy Leibnitz rule by introducing a non local product,
the ``star'' product, and the exact lattice supersymmetry is realized. The
standard momentum conservation is replaced on the lattice by the conservation
of the sine of the momentum, which plays a crucial role in the formulation.
Half lattice spacing structure is essential for the one dimensional model and
the lattice supersymmetry transformation can be identified as a half lattice
spacing translation combined with alternating sign structure. Invariance under
finite translations and locality in the continuum limit are explicitly
investigated and shown to be recovered. Supersymmetric Ward identities are
shown to be satisfied at one loop level. Lie algebraic lattice supersymmetry
algebra of this model suggests a close connection with Hopf algebraic exactness
of the link approach formulation of lattice supersymmetry.Comment: 34 pages, 2 figure
Numerical properties of staggered quarks with a taste-dependent mass term
The numerical properties of staggered Dirac operators with a taste-dependent
mass term proposed by Adams [1,2] and by Hoelbling [3] are compared with those
of ordinary staggered and Wilson Dirac operators. In the free limit and on
(quenched) interacting configurations, we consider their topological
properties, their spectrum, and the resulting pion mass. Although we also
consider the spectral structure, topological properties, locality, and
computational cost of an overlap operator with a staggered kernel, we call
attention to the possibility of using the Adams and Hoelbling operators without
the overlap construction. In particular, the Hoelbling operator could be used
to simulate two degenerate flavors without additive mass renormalization, and
thus without fine-tuning in the chiral limit.Comment: 14 pages, 9 figures. V2: published version; important note added
regarding Hoelbling fermions, otherwise minor change
Dental management considerations for the patient with an acquired coagulopathy. Part 1: Coagulopathies from systemic disease
Current teaching suggests that many patients are at risk for prolonged bleeding during and following invasive dental procedures, due to an acquired coagulopathy from systemic disease and/or from medications. However, treatment standards for these patients often are the result of long-standing dogma with little or no scientific basis. The medical history is critical for the identification of patients potentially at risk for prolonged bleeding from dental treatment. Some time-honoured laboratory tests have little or no use in community dental practice. Loss of functioning hepatic, renal, or bone marrow tissue predisposes to acquired coagulopathies through different mechanisms, but the relationship to oral haemostasis is poorly understood. Given the lack of established, science-based standards, proper dental management requires an understanding of certain principles of pathophysiology for these medical conditions and a few standard laboratory tests. Making changes in anticoagulant drug regimens are often unwarranted and/or expensive, and can put patients at far greater risk for morbidity and mortality than the unlikely outcome of postoperative bleeding. It should be recognised that prolonged bleeding is a rare event following invasive dental procedures, and therefore the vast majority of patients with suspected acquired coagulopathies are best managed in the community practice setting
- …