20,793 research outputs found
Lie-Poisson Deformation of the Poincar\'e Algebra
We find a one parameter family of quadratic Poisson structures on which satisfies the property {\it a)} that it is preserved
under the Lie-Poisson action of the Lorentz group, as well as {\it b)} that it
reduces to the standard Poincar\'e algebra for a particular limiting value of
the parameter. (The Lie-Poisson transformations reduce to canonical ones in
that limit, which we therefore refer to as the `canonical limit'.) Like with
the Poincar\'e algebra, our deformed Poincar\'e algebra has two Casimir
functions which we associate with `mass' and `spin'. We parametrize the
symplectic leaves of with space-time coordinates,
momenta and spin, thereby obtaining realizations of the deformed algebra for
the cases of a spinless and a spinning particle. The formalism can be applied
for finding a one parameter family of canonically inequivalent descriptions of
the photon.Comment: Latex file, 26 page
Lorentz Transformations as Lie-Poisson Symmetries
We write down the Poisson structure for a relativistic particle where the
Lorentz group does not act canonically, but instead as a Poisson-Lie group. In
so doing we obtain the classical limit of a particle moving on a noncommutative
space possessing invariance. We show that if the standard mass
shell constraint is chosen for the Hamiltonian function, then the particle
interacts with the space-time. We solve for the trajectory and find that it
originates and terminates at singularities.Comment: 18 page
Decoherence and Recoherence in Model Quantum Systems
We discuss the various manifestations of quantum decoherence in the forms of
dephasing, entanglement with the environment, and revelation of "which-path"
information. As a specific example, we consider an electron interference
experiment. The coupling of the coherent electrons to the quantized
electromagnetic field illustrates all of these versions of decoherence. This
decoherence has two equivalent interpretations, in terms of photon emission or
in terms of Aharonov-Bohm phase fluctuations. We consider the case when the
coherent electrons are coupled to photons in a squeezed vacuum state. The
time-averaged result is increased decoherence. However, if only electrons which
are emitted during selected periods are counted, the decoherence can be
suppressed below the level for the photon vacuum. This is the phenomenon of
recoherence. This effect is closely related to the quantum violations of the
weak energy condition, and is restricted by similar inequalities. We give some
estimates of the magnitude of the recoherence effect and discuss prospects for
observing it in an electron interferometry experiment.Comment: 8 pages, 3 figures, talk presented at the 7th Friedmann Seminar, Joao
Pessoa, Brazil, July 200
Insulator interface effects in sputter‐deposited NbN/MgO/NbN (superconductor–insulator–superconductor) tunnel junctions
All refractory, NbN/MgO/NbN (superconductor–insulator–superconductor) tunnel junctions have been fabricated by in situ sputter deposition. The influence of MgO thickness (0.8–6.0 nm) deposited under different sputtering ambients at various deposition rates on current–voltage (I–V) characteristics of small‐area (30×30 μm) tunnel junctions is studied. The NbN/MgO/NbN trilayer is deposited in situ by dc reactive magnetron (NbN), and rf magnetron (MgO) sputtering, followed by thermal evaporation of a protective Au cap. Subsequent photolithography, reactive ion etching, planarization, and top contact (Pb/Ag) deposition completes the junction structure. Normal resistance of the junctions with MgO deposited in Ar or Ar and N2 mixture shows good exponential dependence on the MgO thickness indicating formation of a pin‐hole‐free uniform barrier layer. Further, a postdeposition in situ oxygen plasma treatment of the MgO layer increases the junction resistance sharply, and reduces the subgap leakage. A possible enrichment of the MgO layer stoichiometry by the oxygen plasma treatment is suggested. A sumgap as high as 5.7 mV is observed for such a junctio
Development of Low Noise THz SIS Mixer Using an Array of Nb/Al-AlN/NbTiN Junctions
We report the development of a low noise and broadband SIS mixer aimed for 1 THz channel of the Caltech Airborne Submillimeter Interstellar Medium Investigations Receiver (CASIMIR), designed for the Stratospheric Observatory for Infrared Astronomy, (SOFIA). The mixer uses an array of two 0.24 mum^2 Nb/Al-AlN/NbTiN SIS junctions with the critical current density of 30-50 kA/cm^2 . An on-chip double slot planar antenna couples the mixer circuit with the telescope beam. The mixer matching circuit is made with Nb and gold films. The mixer IF circuit is designed to cover 4-8 GHz band. A test receiver with the new mixer has a low noise operation in 0.87-1.12 THz band. The minimum receiver noise measured in our experiment is 353 K (Y = 1.50). The receiver noise corrected for the loss in the LO injection beam splitter is 250 K. The combination of a broad operation band of about 250 GHz with a low receiver noise makes the new mixer a useful element for application at SOFIA
NICMOS Imaging of the Dusty Microjansky Radio Source VLA J123642+621331 at z = 4.424
We present the discovery of a radio galaxy at a likely redshift of z = 4.424
in one of the flanking fields of the Hubble Deep Field. Radio observations with
the VLA and MERLIN centered on the HDF yielded a complete sample of microjansky
radio sources, of which about 20% have no optical counterpart to I < 25 mag. In
this Letter, we address the possible nature of one of these sources, through
deep HST NICMOS images in the F110W (J) and F160W (H) filters. VLA
J123642+621331 has a single emission line at 6595-A, which we identify with
Lyman-alpha at z = 4.424. We argue that this faint (H = 23.9 mag), compact (r =
0.2 arcsec), red (I - K = 2.0) object is most likely a dusty, star-forming
galaxy with an embedded active nucleus.Comment: Accepted for publication in Astrophysical Journal Letters. 11 pages,
4 figures, uses aastex v5.0 and psfi
Composite Fermions with Orbital Magnetization
For quantum Hall systems, in the limit of large magnetic field (or
equivalently small electron band mass ), the static response of electrons
to a spatially varying magnetic field is largely determined by kinetic energy
considerations. This response is not correctly given in existing approximations
based on the Fermion Chern-Simons theory of the partially filled Landau level.
We remedy this problem by attaching an orbital magnetization to each fermion to
separate the current into magnetization and transport contributions, associated
with the cyclotron and guiding center motions respectively. This leads to a
Chern-Simons Fermi liquid description of the state which
correctly predicts the dependence of the static and dynamic response in
the limit .Comment: 4 pages, RevTeX, no figure
- …