450 research outputs found

    Left ventricular to left atrial communication secondary to a paraaortic abscess: Color flow doppler documentation

    Get PDF
    Aortic root abscess occurs frequently in aortic prosthetic valve infective endocarditis. The present echocardiography report documents a ruptured abscess that led to a direct communication between the left ventricular outflow tract and the left atrium confirmed by real-time (color flow) Doppler imaging

    Exploring the Neural Basis of Cognitive Reserve

    Get PDF
    There is epidemiologic and imaging evidence for the presence of cognitive reserve, but the neurophysiologic substrate of CR has not been established. In order to test the hypothesis that CR is related to aspects of neural processing, we used fMRI to image 19 healthy young adults while they performed a nonverbal recognition test. There were two task conditions. A low demand condition required encoding and recognition of single items and a titrated demand condition required the subject to encode and then recognize a larger list of items, with the study list size for each subject adjusted prior to scanning such that recognition accuracy was 75%. We hypothesized that individual differences in cognitive reserve are related to changes in neural activity as subjects moved from the low to the titrated demand task. To test this, we examined the correlation between subjects' fMRI activation and NART scores. This analysis was implemented voxel-wise in a whole brain fMRI dataset. During both the study and test phases of the recognition memory task we noted areas where, across subjects, there were significant positive and negative correlations between change in activation from low to titrated demand and the NART score. These correlations support our hypothesis that neural processing differs across individuals as a function of CR. This differential processing may help explain individual differences in capacity, and may underlie reserve against age-related or other pathologic changes

    The Cluster and Field Galaxy AGN Fraction at z = 1 to 1.5: Evidence for a Reversal of the Local Anticorrelation Between Environment and AGN Fraction

    Full text link
    The fraction of cluster galaxies that host luminous AGN is an important probe of AGN fueling processes, the cold ISM at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M >= 10^{14} Msun) at 1<z<1.5 selected from the Spitzer/IRAC Shallow Cluster Survey, as well as the field fraction in the immediate vicinity of these clusters, and combine these data with measurements from the literature to quantify the relative evolution of cluster and field AGN from the present to z~3. We estimate that the cluster AGN fraction at 1<z<1.5 is f_A = 3.0^{+2.4}_{-1.4}% for AGN with a rest-frame, hard X-ray luminosity greater than L_{X,H} >= 10^{44} erg/s. This fraction is measured relative to all cluster galaxies more luminous than M*_{3.6}(z)+1, where M*_{3.6}(z) is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6um bandpass. The cluster AGN fraction is 30 times greater than the 3sigma upper limit on the value for AGN of similar luminosity at z~0.25, as well as more than an order of magnitude greater than the AGN fraction at z~0.75. AGN with L_{X,H} >= 10^{43} erg/s exhibit similarly pronounced evolution with redshift. In contrast with the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1<z<1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z~1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.Comment: ApJ Accepted. 16 pages, 8 figures in emulateapj forma

    An IR-Selected Galaxy Cluster at z = 1.41

    Get PDF
    We report the discovery of a galaxy cluster at z = 1.41. ISCS J143809+341419 was found in the Spitzer/IRAC Shallow Survey of the Bootes field in the NOAO Deep Wide-Field Survey carried out by IRAC. The cluster candidate was initially identified as a high density region of objects with photometric redshifts in the range 1.3 < z < 1.5. Optical spectroscopy of a limited number of objects in the region shows that 5 galaxies within a ~120 arcsec diameter region lie at z = 1.41 +/- 0.01. Most of these member galaxies have broad--band colors consistent with the expected spectral energy distribution of a passively--evolving elliptical galaxy formed at high redshift. The redshift of ISCS J143809+341419 is the highest currently known for a spectroscopically-confirmed cluster of galaxies.Comment: Accepted for publication in The Astrophysical Journal Letters; 5 pages and 5 figure

    Identification and Differential Vulnerability of a Neural Network in Sleep Deprivation

    Get PDF
    The study aimed to identify task-related brain activation networks whose change in expression exhibits subject differences as a function of differential susceptibility to sleep deprivation. Brain activity during a non-verbal recognition memory task was investigated in an event-related functional MRI paradigm both prior to and after 48 h of sleep deprivation. Nineteen healthy subjects participated. Regional covariance analysis was applied to data. An activation network pattern was identified whose expression decreased from pre- to post-sleep deprivation in 15 out 19 subjects (P < 0.05). Differential decrease in expression correlated with worsening performance in recognition accuracy (P < 0.05). Sites of de-activation were found in the posterior cerebellum, right fusiform gyrus and precuneus, and left lingual and inferior temporal gyri; increased activation was found in the bilateral insula, claustrum and right putamen. A network whose expression decreased after sleep deprivation and correlated with memory performance was identified. We conclude that this activation network plays a role in cognitive function during sleep deprivation

    Quantum-Hall Quantum-Bits

    Get PDF
    Bilayer quantum Hall systems can form collective states in which electrons exhibit spontaneous interlayer phase coherence. We discuss the possibility of using bilayer quantum dot many-electron states with this property to create two-level systems that have potential advantages as quantum bits.Comment: 4 pages, 4 figures included, version to appear in Phys. Rev. B (Rapid Communications
    • …
    corecore