45 research outputs found

    Embedding Ordered Mesoporous Carbons into Thermosensitive Hydrogels: A Cutting-Edge Strategy to Vehiculate a Cargo and Control Its Release Profile

    Get PDF
    9siThe high drug loading capacity, cytocompatibility and easy functionalization of ordered mesoporous carbons (OMCs) make them attractive nanocarriers to treat several pathologies. OMCs’ efficiency could be further increased by embedding them into a hydrogel phase for an in loco prolonged drug release. In this work, OMCs were embedded into injectable thermosensitive hydrogels. In detail, rod-like (diameter ca. 250 nm, length ca. 700 nm) and spherical (diameter approximately 120 nm) OMCs were synthesized by nanocasting selected templates and loaded with ibuprofen through a melt infiltration method to achieve complete filling of their pores (100% loading yield). In parallel, an amphiphilic Poloxamer¼407-based poly(ether urethane) was synthesized (Mn 72 kDa) and solubilized at 15 and 20% w/v concentration in saline solution to design thermosensitive hydrogels. OMC incorporation into the hydrogels (10 mg/mL concentration) did not negatively affect their gelation potential. Hybrid systems successfully released ibuprofen at a slower rate compared to control gels (gels embedding ibuprofen as such), but with no significant differences between rod-like and spherical OMC-loaded gels. OMCs can thus work as effective drug reservoirs that progressively release their payload over time and also upon encapsulation in a hydrogel phase, thus opening the way to their application to treat many different pathological states (e.g., as topical medications).openopenMonica Boffito; Rossella Laurano; Dimitra Giasafaki; Theodore Steriotis; Athanasios Papadopoulos; Chiara Tonda-Turo; Claudio Cassino; Georgia Charalambopoulou; Gianluca CiardelliBoffito, Monica; Laurano, Rossella; Giasafaki, Dimitra; Steriotis, Theodore; Papadopoulos, Athanasios; TONDA TURO, Chiara; Cassino, Claudio; Charalambopoulou, Georgia; Ciardelli, Gianluc

    Effect of Pt nanoparticle decoration on the H2 storage performance of plasma-derived nanoporous graphene

    Get PDF
    A nanoporous and large surface area (∌800 m2/g) graphene-based material was produced by plasma treatment of natural flake graphite and was subsequently surface decorated with platinum (Pt) nano-sized particles via thermal reduction of a Pt precursor (chloroplatinic acid). The carbon-metal nanocomposite showed a ∌2 wt% loading of well-dispersed Pt nanoparticles (<2 nm) across its porous graphene surface, while neither a significant surface chemistry alteration nor a pore structure degradation was observed due to the Pt decoration procedure. The presence of Pt seems to slightly promote the hydrogen sorption behavior at room temperature with respect to the pure graphene, thus implying the rise of “weak” chemisorption phenomena, including a potential hydrogen “spillover” effect. The findings of this experimental study provide insights for the development of novel graphene-based nanocomposites for hydrogen storage applications at ambient conditions

    Synthesis, characterization and assessment of hydrophilic oxidized carbon nanodiscs in bio-related applications

    Get PDF
    Oxidation of industrially prepared carbon nanodiscs using a simple, versatile, and reproducible approach based on the Staudenmaier method yields a new hydrophilic form of nanocarbon. As a result of the strong acid treatment, which also enables the separation of carbon nanodiscs from the mixed starting material, the graphene planes detach from the discs, while the surface of the carbon nanodiscs is decorated with various oxygen-containing functional polar groups. Thus, the completely insoluble carbon nanodiscs are converted to a hydrophilic derivative dispersable in many polar solvents, including water. The new carbon structure is expected to have a wide range of applications in several fields including bioapplications. To this end, the functionalized carbon nanodiscs exhibit very low cytotoxicity, while they achieve high drug loadings, enabling their application as an effective drug nanocarrier. Furthermore, the carbon disks were evaluated as supports in nanobiocatalytic applications, increasing significantly the stability of the systems, due to carbon disks' nano-sized dimensions

    Engineered pH-Responsive Mesoporous Carbon Nanoparticles for Drug Delivery

    Get PDF
    In this work, two types of mesoporous carbon particles with different morphology, size and pore structure have been functionalized with a self-immolative polymer sensitive to changes in pH and tested as drug nanocarriers. It is shown that their textural properties allow significantly higher loading capacity compared to typical mesoporous silica nanoparticles. In vial release experiments of a model Ru dye at pH 7.4 and 5 confirm the pH-responsiveness of the hybrid systems, showing that only small amounts of the cargo are released at physiological pH, whereas at slightly acidic pH (e.g. that of lysosomes) self-immolation takes place and a significant amount of the cargo is released. Cytotoxicity studies using human osteosarcoma cells show that the hybrid nanocarriers are not cytotoxic by themselves but induce significant cell growth inhibition when loaded with a chemotherapeutic drug such as doxorubicin. In preparation of an in vivo application, in vial responsiveness of the hybrid system to short-term pH-triggering is confirmed. The consecutive in vivo study shows no substantial cargo release over a period of 96 hours under physiological pH conditions. Short-term exposure to acidic pH releases an experimental fluorescent cargo during and continuously after the triggering period over 72 hours

    Establishing ZIF-8 as a reference material for hydrogen cryoadsorption: An interlaboratory study

    Get PDF
    Hydrogen storage by cryoadsorption on porous materials has the advantages of low material cost, safety, fast kinetics, and high cyclic stability. The further development of this technology requires reliable data on the H2 uptake of the adsorbents, however, even for activated carbons the values between different laboratories show sometimes large discrepancies. So far no reference material for hydrogen cryoadsorption is available. The metal-organic framework ZIF-8 is an ideal material possessing high thermal, chemical, and mechanical stability that reduces degradation during handling and activation. Here, we distributed ZIF-8 pellets synthesized by extrusion to 9 laboratories equipped with 15 different experimental setups including gravimetric and volumetric analyzers. The gravimetric H2 uptake of the pellets was measured at 77 K and up to 100 bar showing a high reproducibility between the different laboratories, with a small relative standard deviation of 3–4 % between pressures of 10–100 bar. The effect of operating variables like the amount of sample or analysis temperature was evaluated, remarking the calibration of devices and other correction procedures as the most significant deviation sources. Overall, the reproducible hydrogen cryoadsorption measurements indicate the robustness of the ZIF-8 pellets, which we want to propose as a reference material.M. Maiwald, J. A. Villajos, R. Balderas and M. Hirscher acknowledge the EMPIR programme from the European Union's Horizon 2020 research and innovation programme for funding. F. Cuevas and F. Couturas acknowledge support from France 2030 program under project ANR-22-PEHY-0007. D. Cazorla and A. Berenguer-Murcia thank the support by PID2021-123079OB-I00 project funded by MCIN/AEI/10.13039/501100011033, and “ERDF A way of making Europe”. K. N. Heinselman, S. Shulda and P. A. Parilla acknowledge the support from the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technology Office through the HyMARC Energy Materials Network

    Fundamentals of hydrogen storage in nanoporous materials

    Get PDF
    Physisorption of hydrogen in nanoporous materials offers an efficient and competitive alternative for hydrogen storage. At low temperatures (e.g. 77 K) and moderate pressures (below 100 bar) molecular H2 adsorbs reversibly, with very fast kinetics, at high density on the inner surfaces of materials such as zeolites, activated carbons and metal–organic frameworks (MOFs). This review, by experts of Task 40 ‘Energy Storage and Conversion based on Hydrogen’ of the Hydrogen Technology Collaboration Programme of the International Energy Agency, covers the fundamentals of H2 adsorption in nanoporous materials and assessment of their storage performance. The discussion includes recent work on H2 adsorption at both low temperature and high pressure, new findings on the assessment of the hydrogen storage performance of materials, the correlation of volumetric and gravimetric H2 storage capacities, usable capacity, and optimum operating temperature. The application of neutron scattering as an ideal tool for characterising H2 adsorption is summarised and state-of-the-art computational methods, such as machine learning, are considered for the discovery of new MOFs for H2 storage applications, as well as the modelling of flexible porous networks for optimised H2 delivery. The discussion focuses moreover on additional important issues, such as sustainable materials synthesis and improved reproducibility of experimental H2 adsorption isotherm data by interlaboratory exercises and reference materials

    A Round Robin Characterisation of the Hydrogen Sorption Properties of a Carbon Based Material

    No full text
    A Round Robin exercise has been carried out in the frame of the European project NESSHY (Novel and Efficient Solid State HYdrogen storage systems) to evaluate the hydrogen physisorption on a commercial microporous carbon material. Fourteen laboratories have measured pressureÂżcompositionÂżisotherms at 77 K and ambient temperature following a test protocol. The dispersion of isotherms increases with pressure. Four similar isotherms measured by different methods from different laboratories are proposed as standard hydrogen sorption behaviour. The hydrogen capacities are 1.40(0.1) and 0.07(0.01) wt.% for 1 MPa hydrogen pressure at 77 K and ambient temperature, respectively. A statistical evaluation of the results is applied in order to point out laboratories that might need a corrective action. Tentative recommendations for optimising the acquisition of physisorption isotherm data and a check list for data reporting are proposed. The authors advise this carbon material as being suitable for benchmarking of laboratories in this field.JRC.F.2-Cleaner energ
    corecore