17 research outputs found

    Suppression of Richtmyer-Meshkov instability via special pairs of shocks and phase transitions

    Full text link
    The classical Richtmyer-Meshkov instability is a hydrodynamic instability characterizing the evolution of an interface following shock loading. In contrast to other hydrodynamic instabilities such as Rayleigh-Taylor, it is known for being unconditionally unstable: regardless of the direction of shock passage, any deviations from a flat interface will be amplified. In this article, we show that for negative Atwood numbers, there exist special sequences of shocks which result in a nearly perfectly suppressed instability growth. We demonstrate this principle computationally and experimentally with stepped fliers and phase transition materials. A fascinating immediate corollary is that in specific instances a phase transitioning material may self-suppress RMI

    Next Generation Nuclear Plant Methods Technical Program Plan

    Get PDF
    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR
    corecore