21 research outputs found

    Antigen presenting cell-targeted proinsulin expression converts insulin-specific CD8(+) T-cell priming to tolerance in autoimmune-prone NOD mice

    Get PDF
    Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing pancreatic β cells. Therapies need to incorporate strategies to overcome the genetic defects that impair induction or maintenance of peripheral T-cell tolerance and contribute to disease development. We tested whether the enforced expression of an islet autoantigen in antigen-presenting cells (APC) counteracted peripheral T-cell tolerance defects in autoimmune-prone NOD mice. We observed that insulin-specific CD8+ T cells transferred to mice in which proinsulin was transgenically expressed in APCs underwent several rounds of division and the majority were deleted. Residual insulin-specific CD8+ T cells were rendered unresponsive and this was associated with TCR downregulation, loss of tetramer binding and expression of a range of co-inhibitory molecules. Notably, accumulation and effector differentiation of insulin-specific CD8+ T cells in pancreatic lymph nodes was prominent in non-transgenic recipients but blocked by transgenic proinsulin expression. This shift from T-cell priming to T-cell tolerance exemplifies the tolerogenic capacity of autoantigen expression by APC and the capacity to overcome genetic tolerance defects. This article is protected by copyright. All rights reserved

    Neural origins of human sickness in interoceptive responses to inflammation

    Full text link
    BackgroundInflammation is associated with psychological, emotional, and behavioral disturbance, known as sickness behavior. Inflammatory cytokines are implicated in coordinating this central motivational reorientation accompanying peripheral immunologic responses to pathogens. Studies in rodents suggest an afferent interoceptive neural mechanism, although comparable data in humans are lacking.MethodsIn a double-blind, randomized crossover study, 16 healthy male volunteers received typhoid vaccination or saline (placebo) injection in two experimental sessions. Profile of Mood State questionnaires were completed at baseline and at 2 and 3 hours. Two hours after injection, participants performed a high-demand color word Stroop task during functional magnetic resonance imaging. Blood samples were performed at baseline and immediately after scanning.ResultsTyphoid but not placebo injection produced a robust inflammatory response indexed by increased circulating interleukin-6 accompanied by a significant increase in fatigue, confusion, and impaired concentration at 3 hours. Performance of the Stroop task under inflammation activated brain regions encoding representations of internal bodily state. Spatial and temporal characteristics of this response are consistent with interoceptive information flow via afferent autonomic fibers. During performance of this task, activity within interoceptive brain regions also predicted individual differences in inflammation-associated but not placebo-associated fatigue and confusion. Maintenance of cognitive performance, despite inflammation-associated fatigue, led to recruitment of additional prefrontal cortical regions.ConclusionsThese findings suggest that peripheral infection selectively influences central nervous system function to generate core symptoms of sickness and reorient basic motivational states

    Analysis of mouse dendritic cell migration in vivo upon subcutaneous and intravenous injection

    Full text link
    Dendritic cells (DC) have an increasingly important role in vaccination therapy; therefore, this study sought to determine the migratory capacity and immunogenic function of murine bone-marrow (BM)-derived DC following subcutaneous (s.c.) and intravenous (i.v.) injection in vivo. DC were enriched from BM cultures using metrizamide. Following centrifugation, the low-buoyant density cells, referred to throughout as DC, were CD11chigh, Iab high, B7-1high and B7-2high and potently activated alloreactive T cells in mixed lymphocyte reactions (MLR). In contrast, the high-density cells expressed low levels of the above markers, comprised mostly of granulocytes based on GR1 expression, and were poor stimulators in MLR. Following s.c. injection of fluorescently labelled cells into syngeneic recipient mice, DC but not granulocytes migrated to the T-dependent areas of draining lymph nodes (LN). DC numbers in LN were quantified by flow-cytometric analysis, on 1, 2, 3, 5 and 7 days following DC transfer. Peak numbers of around 90 DC per draining LN were found at 2 days. There was very little migration of DC to non-draining LN, thymus or spleen at any of the time-points studied. In contrast, following i.v. injection, DC accumulated mainly in the spleen, liver and lungs of recipient mice but were largely absent from peripheral LN and thymus. The ability of DC to induce T-cell-mediated immune responses was examined using trinitrobenzenesulphate (TNBS)-derivatized DC (TNBS-DC) to sensitize for contact hypersensitivity responses (CHS) in naive syngeneic recipients. Following s.c. injection, as few as 105 TNBS-DC, but not TNBS-granulocytes, sensitized for CHS responses. However, the same number of TNBS-DC failed to induce CHS following i.v. injection. In summary, this study provides new and quantitative data on the organ specific migration of murine BM-derived DC following s.c. and i.v. injection. The demonstration that the route of DC administration determines the potency of CHS induction, strongly suggests that the route of immunization should be considered in the design of vaccine protocols using DC
    corecore