2 research outputs found

    Unveiling the mechanism of abnormal magnetic behavior of FeNiCoMnCu high-entropy alloys through a joint experimental-theoretical study

    No full text
    We combined experimental investigations and theoretical calculations to unveil an abnormal magnetic behavior caused by addition of the nonmagnetic element Cu in face-centered-cubic FeNiCoMn-based high-entropy alloys (HEAs). Upon Cu addition, the probed HEAs show an increase of both Curie temperature and saturation magnetization in as-cast and homogenized states. Specifically, the saturation magnetization of the as-cast HEAs at room temperature increases by 77% and 177% at a Cu content of 11 and 20 at. %, respectively, compared to the as-cast equiatomic FeNiCoMn HEA without Cu. The increase in saturation magnetization of the as-cast HEAs is associated with the formation of an Fe-Co rich phase in the dendritic regions. For the homogenized HEAs, the magnetic state at room temperature transforms from paramagnetism to ferromagnetism after 20 at. % Cu addition. The increase of the saturation magnetization and Curie temperature cannot be adequately explained by the formation of Cu enriched zones according to atom probe tomography analysis. Ab initio calculations suggest Cu plays a pivotal role in the stabilization of a ferromagnetic ordering of Fe, and reveal an increase of the Curie temperature caused by Cu addition which agrees well with the experimental results. The underlying mechanism behind this phenomenon lies in a combined change in unit-cell volume and chemical composition and the related energetic stabilization of the magnetic ordering upon Cu alloying as revealed by theoretical calculations. Thus, the work unveils the mechanisms responsible for the Cu effect on the magnetic properties of FeNiCoMn HEAs, and suggests that nonmagnetic elements are also crucial to tune and improve magnetic properties of HEAs.(OLD) MSE-

    Current challenges and opportunities in microstructure-related properties of advanced high-strength steels

    Get PDF
    This is a viewpoint paper on recent progress in the understanding of the microstructure–property relations of advanced high-strength steels (AHSS). These alloys constitute a class of high-strength, formable steels that are designed mainly as sheet products for the transportation sector. AHSS have often very complex and hierarchical microstructures consisting of ferrite, austenite, bainite, or martensite matrix or of duplex or even multiphase mixtures of these constituents, sometimes enriched with precipitates. This complexity makes it challenging to establish reliable and mechanism-based microstructure–property relationships. A number of excellent studies already exist about the different types of AHSS (such as dual-phase steels, complex phase steels, transformation-induced plasticity steels, twinning-induced plasticity steels, bainitic steels, quenching and partitioning steels, press hardening steels, etc.) and several overviews appeared in which their engineering features related to mechanical properties and forming were discussed. This article reviews recent progress in the understanding of microstructures and alloy design in this field, placing particular attention on the deformation and strain hardening mechanisms of Mn-containing steels that utilize complex dislocation substructures, nanoscale precipitation patterns, deformation-driven transformation, and twinning effects. Recent developments on microalloyed nanoprecipitation hardened and press hardening steels are also reviewed. Besides providing a critical discussion of their microstructures and properties, vital features such as their resistance to hydrogen embrittlement and damage formation are also evaluated. We also present latest progress in advanced characterization and modeling techniques applied to AHSS. Finally, emerging topics such as machine learning, through-process simulation, and additive manufacturing of AHSS are discussed. The aim of this viewpoint is to identify similarities in the deformation and damage mechanisms among these various types of advanced steels and to use these observations for their further development and maturation.(OLD) MSE-
    corecore