1,195 research outputs found
A conserved amino-terminal Shc domain binds to phosphotyrosine motifs in activated receptors and phosphopeptides
AbstractBackground: Signal transduction by growth factor receptor protein-tyrosine kinases is generally initiated by autophosphorylation on tyrosine residues following ligand binding. Phosphotyrosines within activated receptors form binding sites for the Src homology 2 (SH2) domains of cytoplasmic signalling proteins. One such protein, Shc, is tyrosine phosphorylated in response to a large number of growth factors and cytokines. Phosphorylation of Shc on tyrosine residue Y317 allows binding to the SH2 domain of Grb2, and hence stimulation of the Ras pathway. Shc is therefore implicated as an adaptor protein able to couple normal and oncogenic protein-tyrosine kinases to Ras activation. Shc itself contains an SH2 domain at its carboxyl terminus, but the function of the amino-terminal half of the protein is unknown.Results We have found that the Shc amino-terminal region binds to a number of tyrosine-phosphorylated proteins in v-src-transformed cells. This domain also bound directly to the activated epidermal growth factor (EGF) receptor. A phosphotyrosine (pY)-containing peptide modeled after the Shc-binding site in polyoma middle T antigen (LLSNPTpYSVMRSK) was able to compete efficiently with the activated EGF receptor for binding to the Shc amino terminus. This competition was dependent on phosphorylation of the tyrosine residue within the peptide, and was abrogated by deletion of the leucine residue at position –5. The Shc amino-terminal domain also bound to the autophosphorylated nerve growth factor receptor (Trk), but bound significantly less well to a mutant receptor in which tyrosine Y490 in the receptor's Shc-binding site had been substituted by phenylalanine.Conclusion These data implicate the amino-terminal region of Shc in binding to activated receptors and other tyrosine-phosphorylated proteins. Binding appears to be specific for phosphorylated tyrosine residues within the sequence NPXpY, which is conserved in many Shc-binding sites. The Shc amino-terminal region bears only very limited sequence identity to known SH2 domains, suggesting that it represents a new class of phosphotyrosine-binding modules. Consistent with this view, the amino-terminal Shc domain is highly conserved in a Drosophila Shc homologue. Binding of Shc to activated receptors through its amino terminus could leave the carboxy-terminal SH2 domain free for other interactions. In this way, Shc may function as an adaptor protein to bring two tyrosine-phosphorylated proteins together
The neurotrophin receptor, gp75, forms a complex with the receptor tyrosine kinase TrkA
The high-affinity NGF receptor is thought to be a complex of two receptors , gp75 and the tyrosine kinase TrkA, but direct biochemical evidence for such an association had been lacking. In this report, we demonstrate the existence of such a gp75-TrkA complex by a copatching technique. Gp75 on the surface of intact cells is patched with an anti-gp75 antibody and fluorescent secondary antibody, the cells are then fixed to prevent further antibody-induced redistributions, and the distribution of TrkA is probed with and anti-TrkA antibody and fluorescent secondary antibody. We utilize a baculovirus-insect cell expression of wild-type and mutated NGF receptors. TrkA and gp75 copatch in both the absence and presence of NGF. The association is specific, since gp75 does not copatch with other tyrosine kinase receptors, including TrkB, platelet-derived growth factor receptor-beta, and Torso (Tor). To determine which domains of TrkA are required for copatching, we used a series of TrkA-Tor chimeric receptors and show that the extracellular domain of TrkA is sufficient for copatching with gp75. A chimeric receptor with TrkA transmembrane and intracellular domains show partial copatching with gp75. Deletion of the intracellular domain of gp75 decreases but does not eliminate copatching. A point mutation which inactivates the TrkA kinase has no effect on copatching, indicating that this enzymatic activity is not required for association with gp75. Hence, although interactions between the gp75 and TrkA extracellular domains are sufficient for complex formation, interactions involving other receptor domains also play a role
WISEP J180026.60+013453.1: A Nearby Late L Dwarf Near the Galactic Plane
We report a nearby L7.5 dwarf discovered using the Preliminary Data Release
of the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All-Sky
Survey (2MASS). WISEP J180026.60+013453.1 has a motion of 0.42 arcsec/yr and an
estimated distance of 8.8 \pm 1.0 pc. With this distance, it currently ranks as
the sixth closest known L dwarf, although a trigonometric parallax is needed to
confirm this distance. It was previously overlooked because it lies near the
Galactic Plane (b=12). As a relatively bright and nearby late L dwarf with
normal near-infrared colors, W1800+0134 will serve as a benchmark for studies
of cloud-related phenomena in cool substellar atmospheres.Comment: 12 pages, 2 figure, accepted to the Astronomical Journal (AJ
Localizing the lipid products of PI3KÎł in neutrophils
Class I phosphoinositide 3-kinases (PI3Ks) are important regulators of neutrophil migration in response to a range of chemoattractants. Their primary lipid products PtdIns(3,4,5)P3 and PtdIns(3,4)P2 preferentially accumulate near to the leading edge of migrating cells and are thought to act as an important cue organizing molecular and morphological polarization. We have investigated the distribution and accumulation of these lipids independently in mouse neutrophils using eGFP-PH reporters and electron microscopy (EM). We found that authentic mouse neutrophils rapidly polarized their Class I PI3K signalling, as read-out by eGFP-PH reporters, both at the up-gradient leading edge in response to local stimulation with fMLP as well as spontaneously and randomly in response to uniform stimulation. EM studies revealed these events occurred at the plasma membrane, were dominated by accumulation of PtdIns(3,4,5)P3, but not PtdIns(3,4)P2, and were dependent on PI3Kγ and its upstream activation by both Ras and Gβγs.Publisher PDFPeer reviewe
Damage segregation at fissioning may increase growth rates: A superprocess model
A fissioning organism may purge unrepairable damage by bequeathing it
preferentially to one of its daughters. Using the mathematical formalism of
superprocesses, we propose a flexible class of analytically tractable models
that allow quite general effects of damage on death rates and splitting rates
and similarly general damage segregation mechanisms. We show that, in a
suitable regime, the effects of randomness in damage segregation at fissioning
are indistinguishable from those of randomness in the mechanism of damage
accumulation during the organism's lifetime. Moreover, the optimal population
growth is achieved for a particular finite, non-zero level of combined
randomness from these two sources. In particular, when damage accumulates
deterministically, optimal population growth is achieved by a moderately
unequal division of damage between the daughters. Too little or too much
division is sub-optimal. Connections are drawn both to recent experimental
results on inheritance of damage in protozoans, to theories of the evolution of
aging, and to models of resource division between siblings.Comment: Version 2 had significant conceptual and organizational changes,
though only minor changes to the mathematics. Version 3 has minor
proofreading corrections, and a few new references. The paper will appear in
Theoretical Population Biolog
Strange Quark Matter and Compact Stars
Astrophysicists distinguish between three different types of compact stars.
These are white dwarfs, neutron stars, and black holes. The former contain
matter in one of the densest forms found in the Universe which, together with
the unprecedented progress in observational astronomy, make such stars superb
astrophysical laboratories for a broad range of most striking physical
phenomena. These range from nuclear processes on the stellar surface to
processes in electron degenerate matter at subnuclear densities to boson
condensates and the existence of new states of baryonic matter--like color
superconducting quark matter--at supernuclear densities. More than that,
according to the strange matter hypothesis strange quark matter could be more
stable than nuclear matter, in which case neutron stars should be largely
composed of pure quark matter possibly enveloped in thin nuclear crusts.
Another remarkable implication of the hypothesis is the possible existence of a
new class of white dwarfs. This article aims at giving an overview of all these
striking physical possibilities, with an emphasis on the astrophysical
phenomenology of strange quark matter. Possible observational signatures
associated with the theoretically proposed states of matter inside compact
stars are discussed as well. They will provide most valuable information about
the phase diagram of superdense nuclear matter at high baryon number density
but low temperature, which is not accessible to relativistic heavy ion
collision experiments.Comment: 58 figures, to appear in "Progress in Particle and Nuclear Physics";
References added for sections 1,2,3,5; Equation (116) corrected; Figs. 1 and
58 update
Prognostic impact of urokinase-type plasminogen activator receptor (uPAR) in cytosols and pellet extracts derived from primary breast tumours
Using a previously developed enzyme-linked immunosorbent assay (ELISA), the levels of the receptor for urokinase-type plasminogen activator (uPAR) were determined in cytosols and corresponding membrane pellets derived from 878 primary breast tumours. The levels of uPAR in the pellet extracts were more than 3-fold higher than those measured in the cytosols (P< 0.001). Moreover, the uPAR levels in the two types of extracts were weakly, though significantly, correlated with each other (rS= 0.20, P< 0.001). In Cox univariate analysis, high cytosolic levels of uPAR were significantly associated with reduced overall survival (OS) and relapse-free survival (RFS). The levels of uPAR in pellet extracts appeared not to be related with patient survival. In multivariate analysis, elevated levels of uPAR measured in cytosols and pellet extracts were found to be independent predictors of poor OS, not RFS. The prediction of poor prognosis on the basis of high uPAR levels emphasizes its important role in plasmin-mediated degradation of extracellular matrix proteins during cancer invasion and metastasis. © 2001 Cancer Research Campaign http://www.bjcancer.co
Nature-based guided imagery as an intervention for state anxiety
Anxiety is a significant mental health issue in modern society and empirical research into effective interventions to address anxiety has been extensive. Spending time in nature is one approach that has demonstrated anxiolytic effects. However, in some situations and contexts spending time in nature in order to reduce anxiety symptoms may not be possible. For example, in therapeutic settings delivered in a space with no access or exposure to any nature stimuli in the immediate surrounding environment. Guided imagery (GI) has also proven to be effective for reducing anxiety symptoms. Thus, nature-based GI might help to overcome the limitation of access to nature and strengthen the impact of GI interventions
- …