458 research outputs found
Collapse of composite tubes under end moments
Cylindrical tubes of moderate wall thickness such as those proposed for the original space station truss, may fail due to the gradual collapse of the tube cross section as it distorts under load. Sometimes referred to as the Brazier instability, it is a nonlinear phenomenon. This paper presents an extension of an approximate closed form solution of the collapse of isotropic tubes subject to end moments developed by Reissner in 1959 to include specially orthotropic material. The closed form solution was verified by an extensive nonlinear finite element analysis of the collapse of long tubes under applied end moments for radius to thickness ratios and composite layups in the range proposed for recent space station truss framework designs. The finite element analysis validated the assumption of inextensional deformation of the cylindrical cross section and the approximation of the material as specially orthotropic
The Chiral Phase Transition in Dissipative Dynamics
Numerical simulations of the chiral phase transition in the (3+1)dimensional
O(4)-model are presented. The evolutions of the chiral field follow purely
dissipative dynamics, starting from random chirally symmetric initial
configurations down to the true vacuum with spontaneously broken symmetry. The
model stabilizes topological textures which are formed together with domains of
disoriented chiral condensate (DCC) during the roll-down phase. The classically
evolving field acts as source for the emission of pions and mesons.
The exponents of power laws for the growth of angular correlations and for
emission rates are extracted. Fluctuations in the abundance ratios for neutral
and charged pions are compared with those for uncorrelated sources as potential
signature for the chiral phase transition after heavy-ion collisions. It is
found that the presence of stabilizing textures (baryons and antibaryons)
prevents sufficiently rapid growth of DCC-domain size, so observability of
anomalous tails in the abundance ratios is unlikely. However, the transient
formation of growing DCC domains causes sizable broadening of the distributions
as compared to the statistical widths of generic sources.Comment: 28 pages, 8 figure
Tuberculosis and Sexually Transmitted Infections
To the Editor: Mycobacterium tuberculosis infection is a necessary, but not sufficient, cause of tuberculosis (TB). Infection with HIV is the strongest known risk factor for disease progression to TB. In the absence of HIV infection, disease develops in 5% to 15% of infected persons. Unfortunately, the process of progression to disease is poorly understood. We hypothesize that, in addition to HIV, another sexually transmitted infection (STI) also increases such disease progression. Identification of this STI might suggest new approaches to disease control.Several associations between the risk for TB and lifestyle factors have been identified. [...]<br/
DCC Dynamics in (2+1)D-O(3) model
The dynamics of symmetry-breaking after a quench is numerically simulated on
a lattice for the (2+1)-dimensional O(3) model. In addition to the standard
sigma-model with temperature-dependent Phi^4-potential the energy functional
includes a four-derivative current-current coupling to stabilize the size of
the emerging extended topological textures. The total winding number can be
conserved by constraint. As a model for the chiral phase transition during the
cooling phase after a hadronic collision this allows to investigate the
interference of 'baryon-antibaryon' production with the developing disoriented
aligned domains. The growth of angular correlations, condensate, average
orientation is studied in dependence of texture size, quench rate, symmetry
breaking. The classical dissipative dynamics determines the rate of energy
emitted from the relaxing source for each component of the 3-vector field which
provides a possible signature for domains of Disoriented Chiral Condensate. We
find that the 'pions' are emitted in two distinct pulses; for sufficiently
small lattice size the second one carries the DCC signal, but it is strongly
suppressed as compared to simultaneous 'sigma'-meson emission. We compare the
resulting anomalies in the distributions of DCC pions with probabilities
derived within the commonly used coherent state formalism.Comment: 27 pages, 17 figures; several minor insertions in the text; two
references adde
Red cell ABO incompatibility and production of tumour necrosis factor-alpha
Tumour necrosis factor-alpha (TNF) is a major mediator of diverse pathophysiological events similar to those of haemolytic transfusion reactions (HTR), such as fever, intravascular coagulation and organ failure. However, the possible role of TNF in HTR has not been investigated. We have constructed an in vitro whole blood model of HTR to examine whether TNF may be produced in red cell ABO incompatibility. TNF was observed in plasma, in a dose dependent manner, when ABO incompatible red cells were added, but not with compatible (group O) cells. Plasma TNF levels were maximal at 2 h, and declined to control levels by 24 h. Haemolysis of incompatible red cells was accompanied by TNF production. Immune haemolysis induced TNF gene expression by buffy coat leucocytes, as determined by Northern blot analysis. Heat inactivation of plasma abolished TNF production, whereas prior treatment with interferongamma augmented the response. These results demonstrate that a major cytokine is produced in response to red cell incompatibility, and suggest that TNF may play a role in the pathogenesis of haemolytic transfusion reactions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75627/1/j.1365-2141.1991.tb04485.x.pd
High pressure phases in highly piezoelectric Pb(Zr0.52Ti0.48)O3
Two novel room-temperature phase transitions are observed, via synchrotron
x-ray diffraction and Raman spectroscopy, in the Pb(Zr0.52Ti0.48)O3 alloy under
hydrostatic pressures up to 16 GPa. A monoclinic (M)-to-rhombohedral (R1) phase
transition takes place around 2-3 GPa, while this R1 phase transforms into
another rhombohedral phase, R2, at about 6-7 GPa. First-principles calculations
assign the R3m and R3c symmetry to R1 and R2, respectively, and reveal that R2
acts as a pressure-induced structural bridge between the polar R3m and a
predicted antiferrodistortive R-3c phase.Comment: REVTeX, 4 pages with 3 figures embedded. Figs 1 and 3 in colo
Towards a Resolution of the Cosmological Singularity in Non-local Higher Derivative Theories of Gravity
One of the greatest problems of standard cosmology is the Big Bang
singularity. Previously it has been shown that non-local ghostfree
higher-derivative modifications of Einstein gravity in the ultra-violet regime
can admit non-singular bouncing solutions. In this paper we study in more
details the dynamical properties of the equations of motion for these theories
of gravity in presence of positive and negative cosmological constants and
radiation. We find stable inflationary attractor solutions in the presence of a
positive cosmological constant which renders inflation {\it geodesically
complete}, while in the presence of a negative cosmological constant a cyclic
universe emerges. We also provide an algorithm for tracking the super-Hubble
perturbations during the bounce and show that the bouncing solutions are free
from any perturbative instability.Comment: 38 pages, 6 figures. V2: Added: a word to the title, clarifications,
an appendix, many references. To appear in JCA
Holographic Discreteness of Inflationary Perturbations
The holographic entropy bound is used to estimate the quantum-gravitational
discreteness of inflationary perturbations. In the context of scalar inflaton
perturbations produced during standard slow-roll inflation, but assuming that
horizon-scale perturbations ``freeze out'' in discrete steps separated by one
bit of total observable entropy, it is shown that the Hilbert space of a
typical horizon-scale inflaton perturbation is equivalent to that of about 10^5
binary spins-- approximately the inverse of the final scalar metric
perturbation amplitude, independent of other parameters. Holography thus
suggests that in a broad class of fundamental theories, inflationary
perturbations carry a limited amount of information (about 10^5 bits per mode)
and should therefore display discreteness not predicted by the standard field
theory. Some manifestations of this discreteness may be observable in cosmic
background anisotropy.Comment: 13 pages, Latex, 4 figures, to appear in Phys. Rev. D. New figures
and references adde
Bulk and Boundary Dynamics in BTZ Black Holes
Recently, the AdS/CFT conjecture of Maldacena has been investigated in
Lorentzian signature by Balasubramanian et. al. We extend this investigation to
Lorentzian BTZ black hole spacetimes, and study the bulk and boundary behaviour
of massive scalar fields both in the non-extremal and extremal case. Using the
bulk-boundary correspondence, we also evaluate the two-point correlator of
operators coupling to the scalar field at the boundary of the spacetime, and
find that it satisfies thermal periodic boundary conditions relevant to the
Hawking temperature of the BTZ black hole.Comment: 22 pages, LaTeX file. v2: references added. v3: some typo corrections
and minor clarification
- …