99 research outputs found

    Fabricating superior NiAl bronze components through wire arc additive manufacturing

    Get PDF
    Cast nickel aluminum bronze (NAB) alloy is widely used for large engineering components in marine applications due to its excellent mechanical properties and corrosion resistance. Casting porosity, as well as coarse microstructure, however, are accompanied by a decrease in mechanical properties of cast NAB components. Although heat treatment, friction stir processing, and fusion welding were implemented to eliminate porosity, improve mechanical properties, and refine the microstructure of as-cast metal, their applications are limited to either surface modification or component repair. Instead of traditional casting techniques, this study focuses on developing NAB components using recently expanded wire arc additive manufacturing (WAAM). Consumable welding wire is melted and deposited layer-by-layer on substrates producing near-net shaped NAB components. Additively-manufactured NAB components without post-processing are fully dense, and exhibit fine microstructure, as well as comparable mechanical properties, to as-cast NAB alloy. The effects of heat input from the welding process and post-weld-heat-treatment (PWHT) are shown to give uniform NAB alloys with superior mechanical properties revealing potential marine applications of the WAAM technique in NAB production

    Advanced Design for Additive Manufacturing: 3D Slicing and 2D Path Planning

    Get PDF
    Commercial 3D printers have been increasingly implemented in a variety of fields due to their quick production, simplicity of use, and cheap manufacturing. Software installed in these machines allows automatic production of components from computer-aided design (CAD) models with minimal human intervention. However, there are fewer options provided, with a limited range of materials, limited path patterns, and layer thicknesses. For fabricating metal functional parts, such as laser-based, electron beam-based, and arc-welding-based additive manufacturing (AM) machines, usually more careful process design requires in order to obtain components with the desired mechanical and material properties. Therefore, advanced design for additive manufacturing, particularly slicing and path planning, is necessary for AM experts. This chapter introduces recent achievements in slicing and path planning for AM process

    Effect of chemical composition on microstructure, strength and wear resistance of wire deposited Ni-Cu alloys

    Get PDF
    Two Ni-Cu alloys (Monel K500 and FM 60) having various Mn, Fe, Al, Ti and C contents were deposited on a Monel K500 plate at three different speeds using wire arc additive manufacturing technique. Microstructure characterisation, in particular a detailed study of precipitates, was carried out using optical and scanning electron microscopy. Mechanical properties were assessed using hardness, tensile and wear testing. For similar deposition conditions, Monel K500 has exhibited smaller secondary dendrite arm spacing and higher number density of Ti-rich particles, although the Ti concentration in FM 60 was higher. Finer microstructure and Ti precipitation led to superior hardness, tensile and wear resistance of Monel K500 compared to FM 60. The variation in microstructure-properties relationship with alloy composition is discussed

    Direct Fabrication of Atomically Defined Pores in MXenes

    Full text link
    Controlled fabrication of nanopores in atomically thin two-dimensional material offers the means to create robust membranes needed for ion transport, nanofiltration, and DNA sensing. Techniques for creating nanopores have relied upon either plasma etching or direct irradiation using electrons or ions; however, aberration-corrected scanning transmission electron microscopy (STEM) offers the advantage of combining a highly energetic, sub-angstrom sized electron beam for atomic manipulation along with atomic resolution imaging. Here, we utilize a method for automated nanopore fabrication with real-time atomic visualization to enhance our mechanistic understanding of beam-induced transformations. Additionally, an electron beam simulation technique, Electron-Beam Simulator (E-BeamSim) was developed to observe the atomic movements and interactions resulting from electron beam irradiation. Using the 2D MXene Ti3C2Tx, we explore the influence of temperature on nanopore fabrication by tracking atomic transformation pathways and find that at room temperature, electron beam irradiation induces random displacement of atoms and results in a pileup of titanium atoms at the nanopore edge. This pileup was confirmed and demonstrated in E-BeamSim simulations around the small, milled area in the MXene monolayer. At elevated temperatures, the surface functional groups on MXene are effectively removed, and the mobility of atoms increases, which results in atomic transformations that lead to the selective removal of atoms layer by layer. Through controllable manufacture using e-beam milling fabrication, the production and then characterization of the fabricated defects can be better understood for future work. This work can lead to the development of defect engineering techniques within functionalized MXene layers.Comment: Experimental and simulations on the electron beam interactions with MXene monolayers to form nanopores as a function of temperatur

    The Transcriptional Network that Controls Growth Arrest and Macrophage Differentiation in the Human Myeloid Leukemia Cell Line THP-1

    Get PDF
    The response of the human acute myeloid leukemia cell line THP-1 to phorbol esters has been widely studied to test candidate leukemia therapies and as a model of cell cycle arrest and monocyte-macrophage differentiation. Here we have employed Cap Analysis of Gene Expression (CAGE) to analyze a dense time course of transcriptional regulation in THP-1 cells treated with phorbol myristate acetate (PMA) over 96 h. PMA treatment greatly reduced the numbers of cells entering S phase and also blocked cells exiting G2/M. The PMA-treated cells became adherent and expression of mature macrophage-specific genes increased progressively over the duration of the time course. Within 1–2 h PMA induced known targets of tumor protein p53 (TP53), notably CDKN1A, followed by gradual down-regulation of cell-cycle associated genes. Also within the first 2 h, PMA induced immediate early genes including transcription factor genes encoding proteins implicated in macrophage differentiation (EGR2, JUN, MAFB) and down-regulated genes for transcription factors involved in immature myeloid cell proliferation (MYB, IRF8, GFI1). The dense time course revealed that the response to PMA was not linear and progressive. Rather, network-based clustering of the time course data highlighted a sequential cascade of transient up- and down-regulated expression of genes encoding feedback regulators, as well as transcription factors associated with macrophage differentiation and their inferred target genes. CAGE also identified known and candidate novel enhancers expressed in THP-1 cells and many novel inducible genes that currently lack functional annotation and/or had no previously known function in macrophages. The time course is available on the ZENBU platform allowing comparison to FANTOM4 and FANTOM5 data

    Transmisión de Klebsiella pneumoniae resistente a carbapenemes en hospitales de EE.UU.

    Get PDF
    Antecedentes. La Klebsiella pneumoniae resistente a los carbapenemes (CRKp) es el Enterobacterales resistente a los carbapenemes más prevalente en los Estados Unidos. Se evaluó la agrupación de CRKp en pacientes de hospitales estadounidenses. Métodos. De abril de 2016 a agosto de 2017, 350 pacientes con grupo clonal 258 CRKp se inscribieron en el Consortium on Resistance Against Carbapenems in Klebsiella and other Enterobacteriaceae, un estudio de cohortes prospectivo y multicéntrico. Se construyó un árbol de máxima verosimilitud utilizando RAxML. Los conglomerados estáticos compartían ≤21 polimorfismos de un solo nucleótido (SNP) y un ancestro común más reciente. Los conglomerados dinámicos incorporaron la distancia SNP, el tiempo de cultivo y las tasas de acumulación y transmisión SNP utilizando el programa R TransCluster. Resultados. La mayoría de los pacientes ingresaron desde su domicilio (n=150, 43%) o desde centros de cuidados de larga duración (n=115, 33%). La orina (n=149, 43%) fue el lugar de aislamiento más común. En total, se identificaron 55 conglomerados estáticos y 47 dinámicos en 210 de 350 (60%) y 194 de 350 (55%) pacientes, respectivamente. Aproximadamente la mitad de los clusters estáticos eran idénticos a los dinámicos. Los conglomerados estáticos consistían en 33 (60%) conglomerados intrasistema y 22 (40%) conglomerados intersistema. Los conglomerados dinámicos estaban formados por 32 (68%) conglomerados intrasistema y 15 (32%) conglomerados intersistema y presentaban menos diferencias de SNP que los conglomerados estáticos (8 frente a 9; P=.045; intervalo de confianza [IC] del 95%: -4 a 0). Los conglomerados dinámicos intersistema contenían más pacientes que los conglomerados dinámicos intrasistema (mediana [intervalo intercuartílico], 4 [2, 7] frente a 2 [2, 2]; P=,007; IC del 95%: -3 a 0). Conclusiones. Se identificó una amplia transmisión intrasistémica e intersistémica de CRKp en pacientes estadounidenses hospitalizados. El uso de diferentes métodos para evaluar la similitud genética sólo dio lugar a diferencias menores en la interpretación.Background. Carbapenem-resistant Klebsiella pneumoniae (CRKp) is the most prevalent carbapenem-resistant Enterobacterales in the United States. We evaluated CRKp clustering in patients in US hospitals. Methods. From April 2016 to August 2017, 350 patients with clonal group 258 CRKp were enrolled in the Consortium on Resistance Against Carbapenems in Klebsiella and other Enterobacteriaceae, a prospective, multicenter, cohort study. A maximum likelihood tree was constructed using RAxML. Static clusters shared ≤21 single-nucleotide polymorphisms (SNP) and a most recent common ancestor. Dynamic clusters incorporated SNP distance, culture timing, and rates of SNP accumulation and transmission using the R program TransCluster. Results. Most patients were admitted from home (n=150, 43%) or long-term care facilities (n=115, 33%). Urine (n=149, 43%) was the most common isolation site. Overall, 55 static and 47 dynamics clusters were identified involving 210 of 350 (60%) and 194 of 350 (55%) patients, respectively. Approximately half of static clusters were identical to dynamic clusters. Static clusters consisted of 33 (60%) intrasystem and 22 (40%) intersystem clusters. Dynamic clusters consisted of 32 (68%) intrasystem and 15 (32%) intersystem clusters and had fewer SNP differences than static clusters (8 vs 9; P=.045; 95% confidence interval [CI]: −4 to 0). Dynamic intersystem clusters contained more patients than dynamic intrasystem clusters (median [interquartile range], 4 [2, 7] vs 2 [2, 2]; P=.007; 95% CI: −3 to 0). Conclusions. Widespread intrasystem and intersystem transmission of CRKp was identified in hospitalized US patients. Use of different methods for assessing genetic similarity resulted in only minor differences in interpretation

    Sex Disparities and Neutralizing-Antibody Durability to SARS-CoV-2 Infection in Convalescent Individuals

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has now caused over 2 million deaths worldwide and continues to expand. Currently, much is unknown about functionally neutralizing human antibody responses and durability to SARS-CoV-2 months after infection or the reason for the discrepancy in COVID-19 disease and sex. Using convalescent-phase sera collected from 101 COVID-19-recovered individuals 21 to 212 days after symptom onset with 48 additional longitudinal samples, we measured functionality and durability of serum antibodies. We also evaluated associations of individual demographic and clinical parameters with functional neutralizing antibody responses to COVID-19. We found robust antibody durability out to 6 months, as well as significant positive associations with the magnitude of the neutralizing antibody response and male sex and in individuals with cardiometabolic comorbidities. IMPORTANCE In this study, we found that neutralizing antibody responses in COVID-19-convalescent individuals vary in magnitude but are durable and correlate well with receptor binding domain (RBD) Ig binding antibody levels compared to other SARS-CoV-2 antigen responses. In our cohort, higher neutralizing antibody titers are independently and significantly associated with male sex compared to female sex. We also show for the first time that higher convalescent antibody titers in male donors are associated with increased age and symptom grade. Furthermore, cardiometabolic comorbidities are associated with higher antibody titers independently of sex. Here, we present an indepth evaluation of serologic, demographic, and clinical correlates of functional antibody responses and durability to SARS-CoV-2 which supports the growing literature on sex discrepancies regarding COVID-19 disease morbidity and mortality, as well as functional neutralizing antibody responses to SARS-CoV-2

    Nested inversion polymorphisms predispose chromosome 22q11.2 to meiotic rearrangements [RETRACTED]

    Get PDF
    Inversion polymorphisms between low-copy repeats (LCRs) might predispose chromosomes to meiotic non-allelic homologous recombination (NAHR) events and thus lead to genomic disorders. However, for the 22q11.2 deletion syndrome (22q11.2DS), the most common genomic disorder, no such inversions have been uncovered as of yet. Using fiber-FISH, we demonstrate that parents transmitting the de novo 3 Mb LCR22A–D 22q11.2 deletion, the reciprocal duplication, and the smaller 1.5 Mb LCR22A–B 22q11.2 deletion carry inversions of LCR22B–D or LCR22C–D. Hence, the inversions predispose chromosome 22q11.2 to meiotic rearrangements and increase the individual risk for transmitting rearrangements. Interestingly, the inversions are nested or flanking rather than coinciding with the deletion or duplication sizes. This finding raises the possibility that inversions are a prerequisite not only for 22q11.2 rearrangements but also for all NAHR-mediated genomic disorders

    Complete sequence of the 22q11.2 allele in 1,053 subjects with 22q11.2 deletion syndrome reveals modifiers of conotruncal heart defects

    Get PDF
    The 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%-70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals. We found a significant association (FDR p < 0.05) of the CTD subset with 62 common variants in a single linkage disequilibrium (LD) block in a 350 kb interval harboring CRKL. A total of 45 of the 62 variants were associated with increased risk for CTDs (odds ratio [OR) ranges: 1.64-4.75). Associations of four variants were replicated in a meta-analysis of three genome-wide association studies of CTDs in affected individuals without 22q11.2DS. One of the replicated variants, rs178252, is located in an open chromatin region and resides in the double-elite enhancer, GH22J020947, that is predicted to regulate CRKL (CRK-like proto-oncogene, cytoplasmic adaptor) expression. Approximately 23% of patients with nested LCR22C-D deletions have CTDs, and inactivation of Crkl in mice causes CTDs, thus implicating this gene as a modifier. Rs178252 and rs6004160 are expression quantitative trait loci (eQTLs) of CRKL. Furthermore, set-based tests identified an enhancer that is predicted to target CRKL and is significantly associated with CTD risk (GH22J020946, sequence kernal association test (SKAT) p = 7.21 Ã— 10-5) in the 22q11.2DS cohort. These findings suggest that variance in CTD penetrance in the 22q11.2DS population can be explained in part by variants affecting CRKL expression
    • …
    corecore