205 research outputs found

    Asymmetric Chemical Synthesis of (R)- and (S)-Citramalate in High Enantiomeric Purity

    Get PDF
    Both enantiomers of dimethyl 2-acety1citramalate have been asymmetrically synthesized in over 96% enantiomeric excess and good overall chemical yield (500/0)from 2-keto-1,3-oxathianes 1a, and 1b

    Chemical probes for methyl lysine reader domains

    Get PDF
    The primary intent of a chemical probe is to establish the relationship between a molecular target, usually a protein whose function is modulated by the probe, and the biological consequences of that modulation. In order to fulfill this purpose, a chemical probe must be profiled for selectivity, mechanism of action, and cellular activity, as the cell is the minimal system in which ‘biology’ can be explored. This review provides a brief overview of progress toward chemical probes for methyl lysine reader domains with a focus on recent progress targeting chromodomains

    Peptide Technologies in the Development of Chemical Tools for Chromatin‐Associated Machinery

    Get PDF
    Discerning a mechanistic understanding of the cause‐and‐effect relationships between chromatin post‐translational modifications (PTMs) and DNA accessibility for replication, transcription, and repair is an elusive goal being pursued using molecular and cellular biology, biochemistry, and more recently chemical inhibition. Chemical intervention of the chromatin‐associated complexes that regulate PTM maintenance and chromatin structure faces numerous challenges due to the broad surface‐groove interactions between many of these proteins and histones; yet, the increasing interest in understanding chromatin‐modifying complexes suggests tractable lead compounds will be critical for elucidating the mechanisms of chromatin dysregulation in disease states and validating the druggability of these domains. Peptides and peptidomimetics afford several advantages to efficient inhibitor development including a rational starting point, modular assembly, and retention of secondary structure. Numerous peptide technologies have been employed in the chromatin field to characterize substrate interactions, evaluate ligand selectivity, and optimize potent peptidomimetic inhibitors. We describe the progress and advantages of these efforts, and provide a perspective on their implications for future chemical probe and drug discovery efforts. Drug Dev Res 78 : 300–312, 2017. © 2017 Wiley Periodicals, Inc

    Design, synthesis, and protein methyltransferase activity of a unique set of constrained amine containing compounds

    Get PDF
    Epigenetic alterations relate to various human diseases, and developing inhibitors of Kme regulatory proteins is considered to be a new frontier for drug discovery. We were inspired by the known multicyclic ligands, UNC669 and UNC926, which are the first reported small molecule ligands for a methyl-lysine binding domain. We hypothesized that reducing the conformational flexibility of the key amine moiety of UNC669 would result in a unique set of ligands. Twenty-five novel compounds containing a fused bi- or tricyclic amine or a spirocyclic amine were designed and synthesized. To gauge the potential of these amine-containing compounds to interact with Kme regulatory proteins, the compounds were screened against a panel of 24 protein methyltransferases. Compound 13 was discovered as a novel scaffold that interacts with SETD8 and could serve as a starting point for the future development of PKMT inhibitors

    Discovery of a Selective, Substrate-Competitive Inhibitor of the Lysine Methyltransferase SETD8

    Get PDF
    The lysine methyltransferase SETD8 is the only known methyltransferase that catalyzes monomethylation of histone H4 lysine 20 (H4K20). Monomethylation of H4K20 has been implicated in regulating diverse biological processes including the DNA damage response. In addition to H4K20, SETD8 monomethylates non-histone substrates including proliferating cell nuclear antigen (PCNA) and promotes carcinogenesis by deregulating PCNA expression. However, selective inhibitors of SETD8 are scarce. The only known selective inhibitor of SETD8 to date is nahuoic acid A, a marine natural product, which is competitive with the cofactor. Here, we report the discovery of the first substrate-competitive inhibitor of SETD8, UNC0379 (1). This small-molecule inhibitor is active in multiple biochemical assays. Its affinity to SETD8 was confirmed by ITC (isothermal titration calorimetry) and SPR (surface plasmon resonance) studies. Importantly, compound 1 is selective for SETD8 over 15 other methyltransferases. We also describe structure–activity relationships (SAR) of this series

    The Lipid Kinase PIP5K1C Regulates Pain Signaling and Sensitization

    Get PDF
    SummaryNumerous pain-producing (pronociceptive) receptors signal via phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. However, it is currently unknown which lipid kinases generate PIP2 in nociceptive dorsal root ganglia (DRG) neurons and if these kinases regulate pronociceptive receptor signaling. Here, we found that phosphatidylinositol 4-phosphate 5 kinase type 1C (PIP5K1C) is expressed at higher levels than any other PIP5K and, based on experiments with Pip5k1c+/− mice, generates at least half of all PIP2 in DRG neurons. Additionally, Pip5k1c haploinsufficiency reduces pronociceptive receptor signaling and TRPV1 sensitization in DRG neurons as well as thermal and mechanical hypersensitivity in mouse models of chronic pain. We identified a small molecule inhibitor of PIP5K1C (UNC3230) in a high-throughput screen. UNC3230 lowered PIP2 levels in DRG neurons and attenuated hypersensitivity when administered intrathecally or into the hindpaw. Our studies reveal that PIP5K1C regulates PIP2-dependent nociceptive signaling and suggest that PIP5K1C is a therapeutic target for chronic pain

    Identification of Non-Peptide Malignant Brain Tumor (MBT) Repeat Antagonists by Virtual Screening of Commercially Available Compounds

    Get PDF
    The Malignant Brain Tumor (MBT) repeat is an important epigenetic-code “reader” and is functionally associated with differentiation, gene silencing and tumor suppression1–3. Small molecule probes of MBT domains should enable a systematic study of MBT-containing proteins, and potentially reveal novel druggable targets. We designed and applied a virtual screening strategy, which identified potential MBT antagonists in a large database of commercially available compounds. A small set of virtual hits was purchased and submitted to experimental testing. Nineteen of the purchased compounds showed a specific dose-dependent protein binding and will provide critical structure-activity information for subsequent lead generation and optimization

    High-throughput small molecule screen identifies inhibitors of aberrant chromatin accessibility

    Get PDF
    Transcriptional regulators lacking enzymatic activity or binding pockets with targetable molecular features have typically been considered “undruggable,” and a reductionist approach based on identification of their molecular targets has largely failed. We have demonstrated that the Ewing sarcoma chimeric transcription factor, EWSR1-FLI1, maintains accessible chromatin at disease-specific regions. We adapted formaldehyde-assisted isolation of regulatory elements (FAIRE), an assay for accessible chromatin, to screen an epigenetically targeted small molecule library for compounds that reverse the disease-associated signature. This approach can be applied broadly for discovery of chromatin-based developmental therapeutics and offers significant advantages because it does not require the selection of a single molecular target. Using this approach, we identified a specific class of compounds with therapeutic potential

    Pseudo-Cyclization through Intramolecular Hydrogen Bond Enables Discovery of Pyridine Substituted Pyrimidines as New Mer Kinase Inhibitors

    Get PDF
    Abnormal activation or overexpression of Mer receptor tyrosine kinase has been implicated in survival signaling and chemoresistance in many human cancers. Consequently, Mer is a promising novel cancer therapeutic target. A structure-based drug design approach using a pseudo-ring replacement strategy was developed and validated to discover a new family of pyridinepyrimidine analogs as potent Mer inhibitors. Through SAR studies, 10 (UNC2250) was identified as the lead compound for further investigation based on high selectivity against other kinases and good pharmacokinetic properties. When applied to live cells, 10 inhibited steady-state phosphorylation of endogenous Mer with an IC50 of 9.8 nM and blocked ligand-stimulated activation of a chimeric EGFR-Mer protein. Treatment with 10 also resulted in decreased colony-forming potential in rhabdoid and NSCLC tumor cells, thereby demonstrating functional anti-tumor activity. The results provide a rationale for further investigation of this compound for therapeutic application in patients with cancer

    Discovery of Mer Specific Tyrosine Kinase Inhibitors for the Treatment and Prevention of Thrombosis

    Get PDF
    The role of Mer kinase in regulating the second phase of platelet activation generates an opportunity to use Mer inhibitors for preventing thrombosis with diminished likelihood for bleeding as compared to current therapies. Toward this end, we have discovered a novel, Mer kinase specific substituted-pyrimidine scaffold using a structure-based drug design and a pseudo-ring replacement strategy. The co-crystal structure of Mer with two compounds (7 & 22) possessing distinct activity have been determined. Subsequent SAR studies identified compound 23 (UNC2881) as a lead compound for in vivo evaluation. When applied to live cells, 23 inhibits steady-state Mer kinase phosphorylation with an IC50 value of 22 nM. Treatment with 23 is also sufficient to block EGF-mediated stimulation of a chimeric receptor containing the intracellular domain of Mer fused to the extracellular domain of EGFR. In addition, 23 potently inhibits collagen-induced platelet aggregation, suggesting that this class of inhibitors may have utility for prevention and/or treatment of pathologic thrombosis
    • 

    corecore