2,738 research outputs found

    Classical to quantum mapping for an unconventional phase transition in a three-dimensional classical dimer model

    Full text link
    We study the transition between a Coulomb phase and a dimer crystal observed in numerical simulations of the three-dimensional classical dimer model, by mapping it to a quantum model of bosons in two dimensions. The quantum phase transition that results, from a superfluid to a Mott insulator at fractional filling, belongs to a class that cannot be described within the Landau-Ginzburg-Wilson paradigm. Using a second mapping, to a dual model of vortices, we show that the long-wavelength physics near the transition is described by a U(1) gauge theory with SU(2) matter fields.Comment: 15 pages, 5 figures; v2: added appendi

    Excited state spectra at the superfluid-insulator transition out of paired condensates

    Full text link
    We describe gapped single-particle and collective excitations across a superfluid to insulator quantum phase transition of particles (bosons or fermions) in a periodic potential, with an even number of particles per unit cell. We demonstrate that the dynamics is controlled by a quantum impurity problem of a localized particle interacting with the bulk critical modes. Critical exponents are determined by a renormalization group analysis. We discuss applications to spin oscillations of ultracold atoms in optical lattices, and to the electronic phases in the cuprate and related compounds.Comment: 4 pages, 1 figure; fixed referenc

    An alternative method to access diverse N,N′-diquaternised-3,3′-biquinoxalinium “biquinoxen” dications

    Get PDF
    An alternative synthetic route for the design of N,N′-diquaternised-3,3′-biquinoxalinium “biquinoxen” dications is reported, involving oxidative radical coupling of dithionite reduced quinoxaline quaternary salts. Although the reaction is not regioselective, leading to relatively modest yields (up to 32%), the advantages of this new synthetic protocol lie in a simple potentially gram scale synthesis using inexpensive easily accessible reagents with no metal catalysts and no purification steps. Thus whereas the method reported previously to access the N,N′-dimethyl-3,3′-biquinoxalinium, “methylbiquinoxen” precursor gave higher yield than the new method reported here, this new method avoids the limitation of using scarce oxonium reagents. Overall, the new protocol is a robust synthetic strategy which offers new design possibilities

    Mean-field theory for confinement transitions and magnetization plateaux in spin ice

    Get PDF
    We study phase transitions in classical spin ice at nonzero magnetization, by introducing a mean-field theory designed to capture the interplay between confinement and topological constraints. The method is applied to a model of spin ice in an applied magnetic field along the [1 0 0] crystallographic direction and yields a phase diagram containing the Coulomb phase as well as a set of magnetization plateaux. We argue that the lobe structure of the phase diagram, strongly reminiscent of the Bose–Hubbard model, is generic to Coulomb spin liquids

    The Book of Why

    Get PDF
    corecore