14,157 research outputs found

    Properties of length-apodized phase-shifted lpgs operating at the phase matching turning point

    No full text
    The characteristics of length-apodized phase-shifted fiber optic long period gratings with full and partial nanostructured coatings have been explored theoretically and experimentally. The twin rejection bands that are characteristic of length-apodized phase-shifted long period gratings are studied for a long period grating (LPG) operating at the phase matching turning point. When one half of the length of the LPG is coated, complex bandgap like structure appears within the transmission spectrum, which may be of benefit to spectral filter design and for sensing applications

    Changes in the Public\u27s Health and Regulatory Needs

    Get PDF

    A Self-Assembled Microlensing Rotational Probe

    Get PDF
    A technique to measure microscopic rotational motion is presented. When a small fluorescent polystyrene microsphere is attached to a larger polystyrene microsphere, the larger sphere acts as a lens for the smaller microsphere and provides an optical signal that is a strong function of the azimuthal angle. We demonstrate the technique by measuring the rotational diffusion constant of the microsphere in solutions of varying viscosity and discuss the feasibility of using this probe to measure rotational motion of biological systems.Comment: 3 pages with 2 figures (eps format). Paper has been submitted to Applied Physics Letter

    Cure monitoring of a UV cured epoxy resin using a long period grating Mach- Zehnder interferometer

    Get PDF
    A cascaded long period grating Mach-Zehnder interferometer is used to monitor the change in refractive index of a UV cured epoxy resin over a cure cycle. Fourier techniques are used to calculate the phase shift and frequency spectral amplitude of the associated fringe pattern during the cure. The results are compared with the refractive index change during cure calculated using a Fresnel reflection based technique

    Overwrite fabrication and tuning of long period gratings

    Get PDF
    The central wavelengths of the resonance bands are critical aspect of the performance of long period gratings (LPGs) as sensors, particularly for devices designed to operate near the phase matching turning point (PMTP), where the sensitivity to measurements can vary rapidly. Generally, LPGs are characterized by their period, but the amplitude of the amplitude of the index modulation is also an important factor in determining the wavelengths of the resonance bands. Variations in fabrication between LPG sensors can increase or decrease the sensitivity of the LPG to strain, temperature or surrounding refractive index. Here, the technique of overwritten UV laser fabrication is demonstrated. It is shown that, on repeated overwriting, the resonance bands of an LPG exhibit significant wavelength shift, which can be monitored and which can be used to tune the resonance bands to the desired wavelengths. This technique is applied to periods in the range 100 to 200 µm, showing the cycle-to-cycle evolution of the resonance bands near the PMTPs of a number of cladding modes. The use of online monitoring is shown to reduce the resonance band sensor-to-sensor central wavelength variation from 10 nm to 3 nm

    A solution to the slow stabilisation of surface pressure sensors based on the Wilhelmy method

    Get PDF
    Dynamic measurement of surface pressure is of particular interest in the field of Langmuir monolayers, where the change in surface pressure throughout an experiment can provide information on the properties of the monolayer forming material, or on the reaction kinetics of the monolayer’s interaction with other materials. One of the most common methods for the measurement of dynamic surface pressure is the Wilhelmy plate method. This method measures changes in the forces acting upon a thin plate of material at the air-water interface; this measurement is then converted to surface pressure. One version of this method, which uses filter paper plates at the air-water interface, is particularly popular due to their relatively low cost. However, it has been seen that the use of filter paper plates attached to a Wilhelmy balance requires an initial stabilisation period lasting several hours, during which the readings drift from the original baseline. Here the cause of this drift is explored, considering how changes in the weight of the plate over time influence the assumptions on which the surface pressure is derived from the measurements made by the Wilhelmy balance. A simple method for preventing this drift through pre-soaking of the filter paper plates is presented

    A simple method for fabricating phase-shifted fibre Bragg gratings with flexible choice of centre wavelength

    Get PDF
    A simple technique for fabricating phase-shifted fibre Bragg gratings (PSFBGs) without the use of a phase-shifted phase mask is presented. Two, 3-mm long, standard fibre Bragg gratings (FBGs) were inscribed sequentially in singlemode fibre at the same Bragg wavelength such that the FBGs physically overlapped by one grating period. This induces a spectral-hole in the middle of the reflection spectrum of a standard FBG, equivalent to a π-phase shifted FBG. The flexibility of the technique in writing PSFBGs at any choice of wavelength is demonstrated. The results show that PSFBG devices produced by this method are highly reproducible and the process is fas

    Dissolved oxygen sensing using an optical fibre long period grating coated with hemoglobin

    Get PDF
    A long period grating fiber optic sensor coated with hemoglobin is used to detect dissolved oxygen. The sensitivity of this sensor to the ratio of dissolved carbon dioxide to dissolved oxygen is demonstrated via the conversion of carboxyhemoglobin to oxyhemoglobin on the sensor surface. The sensor shows good repeatability with a %CV of less than 1% for carboxyhemoglobin and oxyhemoglobin states with no measurable drift or hysteresis
    • …
    corecore