1,476 research outputs found
Quenched Chiral Perturbation Theory for Baryons
We develop quenched chiral perturbation theory for baryons using the
graded-symmetry formalism of Bernard and Golterman and calculate non-analytic
contributions to the baryon masses coming from quenched chiral loops. The usual
term proportional to is substantially altered due to the
cancellation of diagrams with internal quark loops. In addition, the
``hairpin'' vertex leads to a new correction, proportional to . We
compare our results to numerical lattice data and use them to estimate the size
of the quenching error in the octet baryon masses.Comment: 7 pages (An abridged version of this note will appear in the
proceedings of Lattice'93. Latex + 14 postscript files, bundled using
uufiles. Needs psfig.) UW/PT-93-0
Influenza Vaccine Effectiveness against Hospitalisation with Confirmed Influenza in the 2010-11 Seasons: A Test-negative Observational Study
Immunisation programs are designed to reduce serious morbidity and mortality from influenza, but most evidence supporting the effectiveness of this intervention has focused on disease in the community or in primary care settings. We aimed to examine the effectiveness of influenza vaccination against hospitalisation with confirmed influenza. We compared influenza vaccination status in patients hospitalised with PCR-confirmed influenza with patients hospitalised with influenza-negative respiratory infections in an Australian sentinel surveillance system. Vaccine effectiveness was estimated from the odds ratio of vaccination in cases and controls. We performed both simple multivariate regression and a stratified analysis based on propensity score of vaccination. Vaccination status was ascertained in 333 of 598 patients with confirmed influenza and 785 of 1384 test-negative patients. Overall estimated crude vaccine effectiveness was 57% (41%, 68%). After adjusting for age, chronic comorbidities and pregnancy status, the estimated vaccine effectiveness was 37% (95% CI: 12%, 55%). In an analysis accounting for a propensity score for vaccination, the estimated vaccine effectiveness was 48.3% (95% CI: 30.0, 61.8%). Influenza vaccination was moderately protective against hospitalisation with influenza in the 2010 and 2011 seasons
Interleukin-4 activated macrophages mediate immunity to filarial helminth infection by sustaining CCR3-dependent eosinophilia
Eosinophils are effectors in immunity to tissue helminths but also induce allergic immunopathology. Mechanisms of eosinophilia in non-mucosal tissues during infection remain unresolved. Here we identify a pivotal function of tissue macrophages (Mϕ) in eosinophil anti-helminth immunity using a BALB/c mouse intra-peritoneal Brugia malayi filarial infection model. Eosinophilia, via C-C motif chemokine receptor (CCR)3, was necessary for immunity as CCR3 and eosinophil impairments rendered mice susceptible to chronic filarial infection. Post-infection, peritoneal Mϕ populations proliferated and became alternatively-activated (AAMϕ). Filarial AAMϕ development required adaptive immunity and interleukin-4 receptor-alpha. Depletion of Mϕ prior to infection suppressed eosinophilia and facilitated worm survival. Add back of filarial AAMϕ in Mϕ-depleted mice recapitulated a vigorous eosinophilia. Transfer of filarial AAMϕ into Severe-Combined Immune Deficient mice mediated immunological resistance in an eosinophil-dependent manner. Exogenous IL-4 delivery recapitulated tissue AAMϕ expansions, sustained eosinophilia and mediated immunological resistance in Mϕ-intact SCID mice. Co-culturing Brugia with filarial AAMϕ and/or filarial-recruited eosinophils confirmed eosinophils as the larvicidal cell type. Our data demonstrates that IL-4/IL-4Rα activated AAMϕ orchestrate eosinophil immunity to filarial tissue helminth infection
Partial Flavor Symmetry Restoration for Chiral Staggered Fermions
We study the leading discretization errors for staggered fermions by first
constructing the continuum effective Lagrangian including terms of O(a^2), and
then constructing the corresponding effective chiral Lagrangian. The terms of
O(a^2) in the continuum effective Lagrangian completely break the SU(4) flavor
symmetry down to the discrete subgroup respected by the lattice theory. We
find, however, that the O(a^2) terms in the potential of the chiral Lagrangian
maintain an SO(4) subgroup of SU(4). It follows that the leading discretization
errors in the pion masses are SO(4) symmetric, implying three degeneracies
within the seven lattice irreducible representations. These predictions hold
also for perturbatively improved versions of the action. These degeneracies are
observed, to a surprising degree of accuracy, in existing data. We argue that
the SO(4) symmetry does not extend to the masses and interactions of other
hadrons (vector mesons, baryons, etc), nor to higher order in a^2. We show how
it is possible that, for physical quark masses of O(a^2), the new SO(4)
symmetry can be spontaneously broken, leading to a staggered analogue of the
Aoki-phase of Wilson fermions. This does not, however, appear to happen for
presently studied versions of the staggered action.Comment: 26 pages, 2 figures (using psfig). Version to appear in PRD
(clarifications added to introduction and section 6; typos corrected;
references updated
Modeling Kepler transit light curves as false positives: Rejection of blend scenarios for Kepler-9, and validation of Kepler-9d, a super-Earth-size planet in a multiple system
Light curves from the Kepler Mission contain valuable information on the
nature of the phenomena producing the transit-like signals. To assist in
exploring the possibility that they are due to an astrophysical false positive,
we describe a procedure (BLENDER) to model the photometry in terms of a "blend"
rather than a planet orbiting a star. A blend may consist of a background or
foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated
by the light of the candidate and possibly other stars within the photometric
aperture. We apply BLENDER to the case of Kepler-9, a target harboring two
previously confirmed Saturn-size planets (Kepler-9b and Kepler-9c) showing
transit timing variations, and an additional shallower signal with a 1.59-day
period suggesting the presence of a super-Earth-size planet. Using BLENDER
together with constraints from other follow-up observations we are able to rule
out all blends for the two deeper signals, and provide independent validation
of their planetary nature. For the shallower signal we rule out a large
fraction of the false positives that might mimic the transits. The false alarm
rate for remaining blends depends in part (and inversely) on the unknown
frequency of small-size planets. Based on several realistic estimates of this
frequency we conclude with very high confidence that this small signal is due
to a super-Earth-size planet (Kepler-9d) in a multiple system, rather than a
false positive. The radius is determined to be 1.64 (+0.19/-0.14) R(Earth), and
current spectroscopic observations are as yet insufficient to establish its
mass.Comment: 20 pages in emulateapj format, including 8 tables and 16 figures. To
appear in ApJ, 1 January 2010. Accepted versio
Characteristics of Kepler Planetary Candidates Based on the First Data Set: The Majority are Found to be Neptune-Size and Smaller
In the spring of 2009, the Kepler Mission commenced high-precision photometry
on nearly 156,000 stars to determine the frequency and characteristics of small
exoplanets, conduct a guest observer program, and obtain asteroseismic data on
a wide variety of stars. On 15 June 2010 the Kepler Mission released data from
the first quarter of observations. At the time of this publication, 706 stars
from this first data set have exoplanet candidates with sizes from as small as
that of the Earth to larger than that of Jupiter. Here we give the identity and
characteristics of 306 released stars with planetary candidates. Data for the
remaining 400 stars with planetary candidates will be released in February
2011. Over half the candidates on the released list have radii less than half
that of Jupiter. The released stars include five possible multi-planet systems.
One of these has two Neptune-size (2.3 and 2.5 Earth-radius) candidates with
near-resonant periods.Comment: Paper to accompany Kepler's June 15, 2010 data release; submitted to
Astrophysical Journal Figures 1,2,& 3 revised. Improved labeling on all
figures. Slight changes to planet frequencies in result
Visible-light Phase Curves from the Second Year of the TESS Primary Mission
We carried out a systematic study of full-orbit phase curves for known transiting systems in the northern ecliptic sky that were observed during Year 2 of the TESS primary mission. We applied the same methodology for target selection, data processing, and light-curve fitting as we did in our Year 1 study. Out of the 15 transiting systems selected for analysis, seven—HAT-P-7, KELT-1, KELT-9, KELT-16, KELT-20, Kepler-13A, and WASP-12—show statistically significant secondary eclipses and day–night atmospheric brightness modulations. Small eastward dayside hot-spot offsets were measured for KELT-9b and WASP-12b. KELT-1, Kepler-13A, and WASP-12 show additional phase-curve variability attributed to the tidal distortion of the host star; the amplitudes of these signals are consistent with theoretical predictions. We combined occultation measurements from TESS and Spitzer to compute dayside brightness temperatures, TESS-band geometric albedos, Bond albedos, and phase integrals for several systems. The new albedo values solidify the previously reported trend between dayside temperature and geometric albedo for planets with 1500 K < Tday < 3000 K. For Kepler-13Ab, we carried out an atmospheric retrieval of the full secondary eclipse spectrum, which revealed a noninverted temperature–pressure profile, significant H2O and K absorption in the near-infrared, evidence for strong optical atmospheric opacity due to sodium, and a confirmation of the high geometric albedo inferred from our simpler analysis. We explore the implications of the phase integrals (ratios of Bond to geometric albedos) for understanding exoplanet clouds. We also report updated transit ephemerides for all of the systems studied in this work
Variability Catalog of Stars Observed During the TESS Prime Mission
During its 2-year Prime Mission, TESS observed over 232,000 stars at a 2-min
cadence across ~70% of the sky. These data provide a record of photometric
variability across a range of astrophysically interesting time scales, probing
stellar rotation, stellar binarity, and pulsations. We have analyzed the TESS
2-min light curves to identify periodic variability on timescales 0.01-13 days,
and explored the results across various stellar properties. We have identified
over 46,000 periodic variables with high confidence, and another 38,000 with
moderate confidence. These light curves show differences in variability type
across the HR diagram, with distinct groupings of rotational, eclipsing, and
pulsational variables. We also see interesting patterns across
period-luminosity space, with clear correlations between period and luminosity
for high-mass pulsators, evolved stars, and contact binary systems, a
discontinuity corresponding to the Kraft break, and a lower occurrence of
periodic variability in main-sequence stars on timescales of 1.5 to 2 days. The
variable stars identified in this work are cross-identified with several other
variability catalogs, from which we find good agreement between the measured
periods of variability. There are ~65,000 variable stars that are newly
identified in this work, which includes rotation rates of low-mass stars,
high-frequency pulsation periods for high-mass stars, and a variety of giant
star variability.Comment: 29 pages, 17 figures, accepted to ApJS, catalog available:
https://archive.stsci.edu/hlsp/tess-svc, data visualization tool:
https://filtergraph.com/tessvariabilit
- …