143 research outputs found

    Is there evidence for additional neutrino species from cosmology?

    Full text link
    It has been suggested that recent cosmological and flavor-oscillation data favor the existence of additional neutrino species beyond the three predicted by the Standard Model of particle physics. We apply Bayesian model selection to determine whether there is indeed any evidence from current cosmological datasets for the standard cosmological model to be extended to include additional neutrino flavors. The datasets employed include cosmic microwave background temperature, polarization and lensing power spectra, and measurements of the baryon acoustic oscillation scale and the Hubble constant. We also consider other extensions to the standard neutrino model, such as massive neutrinos, and possible degeneracies with other cosmological parameters. The Bayesian evidence indicates that current cosmological data do not require any non-standard neutrino properties.Comment: 17 pages, 7 figures. v3: replaced with version published in JCAP (typo fixes, including Figure 1 units

    Avoiding bias in reconstructing the largest observable scales from partial-sky data

    Full text link
    Obscuration due to Galactic emission complicates the extraction of information from cosmological surveys, and requires some combination of the (typically imperfect) modeling and subtraction of foregrounds, or the removal of part of the sky. This particularly affects the extraction of information from the largest observable scales. Maximum-likelihood estimators for reconstructing the full-sky spherical harmonic coefficients from partial-sky maps have recently been shown to be susceptible to contamination from within the sky cut, arising due to the necessity to band-limit the data by smoothing prior to reconstruction. Using the WMAP 7-year data, we investigate modified implementations of such estimators which are robust to the leakage of contaminants from within masked regions. We provide a measure, based on the expected amplitude of residual foregrounds, for selecting the most appropriate estimator for the task at hand. We explain why the related quadratic maximum-likelihood estimator of the angular power spectrum does not suffer from smoothing-induced bias.Comment: 8 pages, 8 figures. v2: replaced with version accepted by PRD (minor amendments to text only

    Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization

    Get PDF
    [Abridged] Recent results from the BICEP, Keck Array and Planck Collaborations demonstrate that Galactic foregrounds are an unavoidable obstacle in the search for evidence of inflationary gravitational waves in the cosmic microwave background (CMB) polarization. Beyond the foregrounds, the effect of lensing by intervening large-scale structure further obscures all but the strongest inflationary signals permitted by current data. With a plethora of ongoing and upcoming experiments aiming to measure these signatures, careful and self-consistent consideration of experiments' foreground- and lensing-removal capabilities is critical in obtaining credible forecasts of their performance. We investigate the capabilities of instruments such as Advanced ACTPol, BICEP3 and Keck Array, CLASS, EBEX10K, PIPER, Simons Array, SPT-3G and SPIDER, and projects as COrE+, LiteBIRD-ext, PIXIE and Stage IV, to clean contamination due to polarized synchrotron and dust from raw multi-frequency data, and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data). Incorporating these effects, we present forecasts for the constraining power of these experiments in terms of inflationary physics, the neutrino sector, and dark energy parameters. Made publicly available through an online interface, this tool enables the next generation of CMB experiments to foreground-proof their designs, optimize their frequency coverage to maximize scientific output, and determine where cross-experimental collaboration would be most beneficial. We find that analyzing data from ground, balloon and space instruments in complementary combinations can significantly improve component separation performance, delensing, and cosmological constraints over individual datasets.Comment: 37 pages plus appendices, 15 figures; first two authors contributed equally to this work; forecasting tool available at http://turkey.lbl.gov. v4: matches version published in JCAP (with extended dark energy constraints

    Forecasting constraints from the cosmic microwave background on eternal inflation

    Get PDF
    We forecast the ability of cosmic microwave background (CMB) temperature and polarization datasets to constrain theories of eternal inflation using cosmic bubble collisions. Using the Fisher matrix formalism, we determine both the overall detectability of bubble collisions and the constraints achievable on the fundamental parameters describing the underlying theory. The CMB signatures considered are based on state-of-the-art numerical relativistic simulations of the bubble collision spacetime, evolved using the full temperature and polarization transfer functions. Comparing a theoretical cosmic-variance-limited experiment to the WMAP and Planck satellites, we find that there is no improvement to be gained from future temperature data, that adding polarization improves detectability by approximately 30%, and that cosmic-variance-limited polarization data offer only marginal improvements over Planck. The fundamental parameter constraints achievable depend on the precise values of the tensor-to-scalar ratio and energy density in (negative) spatial curvature. For a tensor-to-scalar ratio of 0.10.1 and spatial curvature at the level of 10410^{-4}, using cosmic-variance-limited data it is possible to measure the width of the potential barrier separating the inflating false vacuum from the true vacuum down to MPl/500M_{\rm Pl}/500, and the initial proper distance between colliding bubbles to a factor π/2\pi/2 of the false vacuum horizon size (at three sigma). We conclude that very near-future data will have the final word on bubble collisions in the CMB.Comment: 14 pages, 6 figure

    First Observational Tests of Eternal Inflation

    Get PDF
    The eternal inflation scenario predicts that our observable Universe resides inside a single bubble embedded in a vast inflating multiverse. We present the first observational tests of eternal inflation, performing a search for cosmological signatures of collisions with other bubble universes in cosmic microwave background data from the WMAP satellite. We conclude that the WMAP 7-year data do not warrant augmenting the cold dark matter model with a cosmological constant with bubble collisions, constraining the average number of detectable bubble collisions on the full sky N̅ _s<1.6 at 68% C.L. Data from the Planck satellite can be used to more definitively test the bubble-collision hypothesis

    A robust constraint on cosmic textures from the cosmic microwave background

    Full text link
    Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early universe, and which leave characteristic hot and cold spots in the CMB. We apply Bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.Comment: 5 pages, 2 figures. v2: replaced with version accepted by PRL (minor amendments to reduce length and address referee comments

    How isotropic is the Universe?

    Get PDF
    A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σV/H)0<4.7×1011(\sigma_V/H)_0 < 4.7 \times 10^{-11} (95% CI), which is an order of magnitude tighter than previous Planck results that used CMB temperature only. We also place upper limits on other modes of anisotropic expansion, with the weakest limit arising from the regular tensor mode, (σT,reg/H)0<1.0×106(\sigma_{T,\rm reg}/H)_0<1.0 \times 10^{-6} (95% CI). Including all degrees of freedom simultaneously for the first time, anisotropic expansion of the Universe is strongly disfavoured, with odds of 121,000:1 against.Comment: 6 pages, 1 figure, v2: replaced with version accepted by PR

    A framework for testing isotropy with the cosmic microwave background

    Get PDF
    We present a new framework for testing the isotropy of the Universe using cosmic microwave background data, building on the nested-sampling ANICOSMO code. Uniquely, we are able to constrain the scalar, vector and tensor degrees of freedom alike; previous studies only considered the vector mode (linked to vorticity). We employ Bianchi type VIIh_h cosmologies to model the anisotropic Universe, from which other types may be obtained by taking suitable limits. In a separate development, we improve the statistical analysis by including the effect of Bianchi power in the high-\ell, as well as the low-\ell, likelihood. To understand the effect of all these changes, we apply our new techniques to WMAP data. We find no evidence for anisotropy, constraining shear in the vector mode to (σV/H)0<1.7×1010(\sigma_V/H)_0 < 1.7 \times 10^{-10} (95% CL). For the first time, we place limits on the tensor mode; unlike other modes, the tensor shear can grow from a near-isotropic early Universe. The limit on this type of shear is (σT,reg/H)0<2.4×107(\sigma_{T,\rm reg}/H)_0 < 2.4 \times 10^{-7} (95% CL).Comment: 11 pages, 6 figures, v3: minor modifications to match version accepted by MNRA

    Unbiased likelihood-free inference of the Hubble constant from light standard sirens

    Get PDF
    Multi-messenger observations of binary neutron star mergers offer a promising path towards resolution of the Hubble constant (H0H_0) tension, provided their constraints are shown to be free from systematics such as the Malmquist bias. In the traditional Bayesian framework, accounting for selection effects in the likelihood requires calculation of the expected number (or fraction) of detections as a function of the parameters describing the population and cosmology; a potentially costly and/or inaccurate process. This calculation can, however, be bypassed completely by performing the inference in a framework in which the likelihood is never explicitly calculated, but instead fit using forward simulations of the data, which naturally include the selection. This is Likelihood-Free Inference (LFI). Here, we use density-estimation LFI, coupled to neural-network-based data compression, to infer H0H_0 from mock catalogues of binary neutron star mergers, given noisy redshift, distance and peculiar velocity estimates for each object. We demonstrate that LFI yields statistically unbiased estimates of H0H_0 in the presence of selection effects, with precision matching that of sampling the full Bayesian hierarchical model. Marginalizing over the bias increases the H0H_0 uncertainty by only 6%6\% for training sets consisting of O(104)O(10^4) populations. The resulting LFI framework is applicable to population-level inference problems with selection effects across astrophysics.Comment: 19 pages, 8 figures, comments welcom
    corecore