194 research outputs found

    3D culture of Her2+ breast cancer cells promotes AKT to MAPK switching and a loss of therapeutic response

    Get PDF
    The Her2 receptor is overexpressed in up to 25 % of breast cancers and is associated with a poor prognosis. Around half of Her2+ breast cancers also express the estrogen receptor and treatment for such tumours can involve both endocrine and Her2-targeted therapies. However, despite preclinical data supporting the effectiveness of these agents, responses can vary widely in the clinical setting. In light of the increasing evidence pointing to the interplay between the tumour and its extracellular microenvironment as a significant determinant of therapeutic sensitivity and response here we investigated the impact of 3D matrix culture of breast cancer cells on their therapeutic sensitivity

    Co-administration of fish oil with signal transduction inhibitors has anti-migration effects in breast cancer cell lines, in vitro

    Get PDF
    Background: There is an urgent need for new therapies to treat cancer metastasis. Fish oil, with high omega 3 fatty acid content, has shown anticancer activity and signal transduction inhibitors have shown anti-metastatic properties. Objective: To provide preliminary in vitro data on the anti-migration potential of signal transduction inhibitors and co-administered fish oil. Methods: MCF-7, TamR and FasR breast cancer cell lines were used to determine the effects of combinations of PD98059, LY294002 and fish oil in growth assays. Modulations of p-Src and COX-2, both mediators of motility and invasion, were then determined by Western blotting and IHC to ascertain effects on migration potential. Results: Migration rates for the three cell lines examined were ranked: FasR>TamR>MCF-7 (p <0.05). Addition of fish oil reduced the number of TamR cells migrating after 48h (p <0.05), while the addition of PD98059 and LY294002 also decreased migratory potential of TamR cells (p <0.05). Addition of PD98059 and LY294002 to TamR cells did not result in a significant decrease in p-Src levels; as was the case when PD98059, LY294002 and 4-hydroxytamoxifen were added to MCF-7 cells. However, the co-administration of fish oil markedly reduced p-Src and COX-2 expression in both cell lines. Conclusion: Co-administration of a commercial fish oil with signal transduction inhibitors results in decreased cell migration via an unknown co-operative mechanism and could constitute a novel approach for the treatment of breast cancer metastasis

    The discovery of new and more potent chloropyramine (C4) analogues for the potential treatment of invasive breast cancer

    Get PDF
    Breast cancer is the second most common cancer worldwide, accounting for 25% of all female cancers. Although the survival rate has increased significantly in the past few decades, patients who develop secondary site metastasis as well as those diagnosed with triple negative breast cancer still represent a real unmet medical challenge. Previous studies have shown that chloropyramine (C4) inhibits FAK-VEGFR3 signalling. More recently, C4 is reported to have SASH1 inducing properties. However, C4 exerts its antitumour and antiangiogenic effects at high micromolar concentrations (>100 ΞΌm) that would not be compatible with further drug development against invasive breast cancer driven by FAK signalling. In this study, molecular modelling guided structural modifications have been introduced to the chloropyramine C4 scaffold to improve its activity in breast cancer cell lines. Seventeen compounds were designed and synthesized, and their antiproliferative activity was evaluated against three human breast cancer lines (MDA-MB-231, BT474 and T47D). Compound 5c was identified to display an average activity of IC50 = 23.5–31.3 ΞΌm, which represents a significant improvement of C4 activity in the same assay model. Molecular modelling and pharmacokinetic studies provided more promising insights into the mechanistic features of this new series

    Structure-based virtual screening, synthesis and biological evaluation of potential FAK-FAT domain inhibitors for treatment of metastatic cancer

    Get PDF
    Focal adhesion kinase (FAK) is a tyrosine kinase that is overexpressed and activated in several advanced-stage solid cancers. In cancer cells, FAK promotes the progression and metastasis of tumours. In this study, we used structure-based virtual screening to filter a library of more than 210K compounds against the focal adhesion targeting FAK-focal adhesion targeting (FAT) domain to identify 25 virtual hit compounds which were screened in the invasive breast cancer line (MDA-MB-231). Most notably, compound I showed low micromolar antiproliferative activity, as well as antimigratory activity. Moreover, examination in a model of triple negative breast cancer (TNBC), revealed that, despite not effecting FAK phosphorylation, compound I significantly impairs proliferation whilst impairing focal adhesion growth and turnover leading to reduced migration. Further optimisation and synthesis of analogues of the lead compound I using a four-step synthetic procedure was performed, and analogues were assessed for their antiproliferative activity against three breast cancer (MDA-MB-231, T47D, BT474) cell lines and one pancreatic cancer (MIAPaCa2) cell line. Compound 5f was identified as a promising lead compound with IC50 values in the range of 4.59–5.28 ΞΌM in MDA-MB-231, T47D, BT474, and MIAPaCa2. Molecular modelling and pharmacokinetic studies provided more insight into the therapeutic features of this new series

    Overexpression of specific CD44 isoforms is associated with aggressive cell features in acquired endocrine resistance

    Get PDF
    While endocrine therapy is the mainstay of ER+ breast cancer, the clinical effectiveness of these agents is limited by the phenomenon of acquired resistance that is associated with disease relapse and poor prognosis. Our previous studies revealed that acquired resistance is accompanied by a gain in cellular invasion and migration and also that CD44 family proteins are overexpressed in the resistant phenotype. Given the association of CD44 with tumor progression, we hypothesized that its overexpression may act to promote the aggressive behavior of endocrine-resistant breast cancers. Here, we have investigated further the role of two specific CD44 isoforms, CD44v3 and CD44v6, in the endocrine-resistant phenotype. Our data revealed that overexpression of CD44v6, but not CD44v3, in endocrine-sensitive MCF-7 cells resulted in a gain in EGFR signaling, enhanced their endogenous invasive capacity, and attenuated their response to endocrine treatment. Suppression of CD44v6 in endocrine-resistant cell models was associated with a reduction in their invasive capacity. Our data suggest that upregulation of CD44v6 in acquired resistant breast cancer may contribute to a gain in the aggressive phenotype of these cells and loss of endocrine response through transactivation of the EGFR pathway. Future therapeutic targeting of CD44v6 may prove to be an effective strategy alongside EGFR-targeted agents in delaying/preventing acquired resistance in breast cancer

    Zip4 (Slc39a4) Expression is Activated in Hepatocellular Carcinomas and Functions to Repress Apoptosis, Enhance Cell Cycle and Increase Migration

    Get PDF
    Background: The zinc transporter ZIP4 (Slc39a4) is important for proper mammalian development and is an essential gene in mice. Recent studies suggest that this gene may also play a role in pancreatic cancer. Methods/Principal Findings: Herein, we present evidence that this essential zinc transporter is expressed in hepatocellular carcinomas. Zip4 mRNA and protein were dramatically elevated in hepatocytes in the majority of human hepatocellular carcinomas relative to noncancerous surrounding tissues, as well as in hepatocytes in hepatocellular carcinomas occurring in farnesoid X receptor-knockout mice. Interestingly, meta-analysis of microarray data in the Geo and Oncomine databases suggests that Zip4 mRNA may also be elevated in many types of cancer. Potential mechanisms of action of ZIP4 were examined in cultured cell lines. RNAi knockdown of Zip4 in mouse Hepa cells significantly increased apoptosis and modestly slowed progression from G0/G1 to S phase when cells were released from hydroxyurea block into zinc-deficient medium. Cell migration assays revealed that RNAi knockdown of Zip4 in Hepa cells depressed in vitro migration whereas forced over-expression in Hepa cells and MCF-7 cells enhanced in vitro migration. Conclusions: ZIP4 may play a role in the acquisition of zinc by hepatocellular carcinomas, and potentially many different cancerous cell-types, leading to repressed apoptosis, enhanced growth rate and enhanced invasive behavior

    Computer-aided identification of novel anticancer compounds with a possible dual HER1/HER2 inhibition mechanism

    Get PDF
    HER1 and HER2 are frequently overexpressed in human tumors where they drive cellular proliferation. For this reason they are considered important targets in anticancer therapy with dual HER1/HER2 inhibitors being recently approved and marketed. In this paper we report the identification of a series of compounds with anticancer activity by a combined virtual screening approach on the kinase domains of HER1 and HER2. 6 hit compounds that present a sub- or low-micromolar activity in two cell-based assays, were initially identified and a subsequent design cycle led to the synthesis of a compound with nanomolar activity in the cell-based assays

    Anti-oestrogens but not oestrogen deprivation promote cellular invasion in intercellular adhesion-deficient breast cancer cells

    Get PDF
    Introduction Anti-oestrogens have been the mainstay of therapy in patients with oestrogen-receptor (ER) positive breast cancer and have provided significant improvements in survival. However, their benefits are limited by tumour recurrence in a significant proportion of initially drug-responsive breast cancer patients because of acquired anti-oestrogen resistance. Relapse on such therapies clinically presents as local and/or regional recurrences, frequently with distant metastases, and the prognosis for these patients is poor. The selective ER modulator, tamoxifen, classically exerts gene inhibitory effects during the drug-responsive phase in ER-positive breast cancer cells. Paradoxically, this drug is also able to induce the expression of genes, which in the appropriate cell context may contribute to an adverse cell phenotype. Here we have investigated the effects of tamoxifen and fulvestrant treatment on invasive signalling and compared this with the direct effects of oestrogen withdrawal to mimic the action of aromatase inhibitors. Methods The effect of oestrogen and 4-hydroxy-tamoxifen on the invasive capacity of endocrine-sensitive MCF-7 cells, in the presence or absence of functional E-cadherin, was determined by Matrigel invasion assays. Studies also monitored the impact of oestrogen withdrawal or treatment with fulvestrant on cell invasion. Western blotting using phospho-specific antibodies was performed to ascertain changes in invasive signalling in response to the two anti-oestrogens versus both oestradiol treatment and withdrawal. Results To the best of our knowledge, we report for the first time that tamoxifen can promote an invasive phenotype in ER-positive breast cancer cells under conditions of poor cell-cell contact and suggest a role for Src kinase and associated pro-invasive genes in this process. Our studies revealed that although this adverse effect is also apparent for further classes of anti-oestrogens, exemplified by the steroidal agent fulvestrant, it is absent during oestrogen withdrawal. Conclusions These data highlight a previously unreported effect of tamoxifen (and potentially further anti-oestrogens), that such agents appear able to induce breast cancer cell invasion in a specific context (absence of good cell-cell contacts), where these findings may have major clinical implications for those patients with tumours that have inherently poor intercellular adhesion. In such patients oestrogen deprivation with aromatase inhibitors may be more appropriate

    Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan

    Get PDF
    Background: Acquired resistance to endocrine therapy in breast cancer is a significant problem with relapse being associated with local and/or regional recurrence and frequent distant metastases. Breast cancer cell models reveal that endocrine resistance is accompanied by a gain in aggressive behaviour driven in part through altered growth factor receptor signalling, particularly involving erbB family receptors. Recently we identified that CD44, a transmembrane cell adhesion receptor known to interact with growth factor receptors, is upregulated in tamoxifen-resistant (TamR) MCF7 breast cancer cells. The purpose of this study was to explore the consequences of CD44 upregulation in an MCF7 cell model of acquired tamoxifen resistance, specifically with respect to the hypothesis that CD44 may influence erbB activity to promote an adverse phenotype. Methods: CD44 expression in MCF7 and TamR cells was assessed by RT-PCR, Western blotting and immunocytochemistry. Immunofluorescence and immunoprecipitation studies revealed CD44-erbB associations. TamR cells (± siRNA-mediated CD44 suppression) or MCF7 cells (± transfection with the CD44 gene) were treated with the CD44 ligand, hyaluronon (HA), or heregulin and their in vitro growth (MTT), migration (Boyden chamber and wound healing) and invasion (Matrigel transwell migration) determined. erbB signalling was assessed using Western blotting. The effect of HA on erbB family dimerisation in TamR cells was determined by immunoprecipitation in the presence or absence of CD44 siRNA. Results: TamR cells overexpressed CD44 where it was seen to associate with erbB2 at the cell surface. siRNA-mediated suppression of CD44 in TamR cells significantly attenuated their response to heregulin, inhibiting heregulin-induced cell migration and invasion. Furthermore, TamR cells exhibited enhanced sensitivity to HA, with HA treatment resulting in modulation of erbB dimerisation, ligand-independent activation of erbB2 and EGFR and induction of cell migration. Overexpression of CD44 in MCF7 cells, which lack endogenous CD44, generated an HA-sensitive phenotype, with HA-stimulation promoting erbB/EGFR activation and migration. Conclusions: These data suggest an important role for CD44 in the context of tamoxifen-resistance where it may augment cellular response to erbB ligands and HA, factors that are reported to be present within the tumour microenvironment in vivo. Thus CD44 may present an important determinant of breast cancer progression in the setting of endocrine resistance
    • …
    corecore