63 research outputs found

    Trace elements in otoliths indicate the use of open-coast versus bay nursery habitats by juvenile California halibut

    Get PDF
    Many coastal fishes use inshore nursery habitats as juveniles, but it is often difficult to define which nursery areas supply most recruits to adult populations. We tested whether trace element concentrations in otoliths can be used to identify which of 2 nursery habitats (bays or shallow open coast) were occupied by juvenile California halibut. Juveniles from bays in 1998 had concentrations of Cu and Pb in their otoliths that were higher than those in open coast juveniles of the same year. This broad-scale difference between bay and open coast juveniles remained intact when bay juveniles from 1994 to 1997 were added to the comparison, and juvenile halibut could be assigned to their nursery habitat of origin quite accurately (83%) using otolith concentrations of Cu and Pb. At a finer spatial scale, otolith concentrations of Cu and Pb differed among individual bays, and fish from the same bay could differ among years, precluding their use as markers of nursery habitat use at these scales. Like halibut otoliths, sediments from bays had higher concentrations of Cu and Pb than open coast nursery sites, and this difference was consistent over 11 yr. Otoliths and sediments from individual bays, however, showed no correlation in Cu and Pb concentrations. The concentration of Cu and Pb in sediments and their deposition in otoliths were thus loosely matched at a broad scale, though the underlying cause of this link is not known. A discriminant model, parameterized using Cu and Pb levels in juvenile otoliths, was used to classify prior nursery habitat use by 19 larger halibut (of unknown origin). Eleven of these halibut had high levels of Cu and Pb in the part of the otolith deposited as a juvenile, and were classified as of bay origin. The other 8 halibut had low otolith Cu and Pb levels in the juvenile portion of their otoliths and were classified as having used open coast nurseries. Overall, our results suggest that this approach has the potential to allow identification of nursery habitat use by California halibut at a broad scale (bay vs open coast) but not at a fine scale (individual bays)

    Evaluating the metapopulation consequences of ecological traps

    Get PDF
    Ecological traps occur when environmental changes cause maladaptive habitat selection. Despite their relevance to metapopulations, ecological traps have been studied predominantly at local scales. How these local impacts scale up to affect the dynamics of spatially structured metapopulations in heterogeneous landscapes remains unexplored. We propose that assessing the metapopulation consequences of traps depends on a variety of factors that can be grouped into four categories: the probability of encounter, the likelihood of selection, the fitness costs of selection and species-specific vulnerability to these costs. We evaluate six hypotheses using a network-based metapopulation model to explore the relative importance of factors across these categories within a spatial context. Our model suggests (i) traps are most severe when they represent a large proportion of habitats, severely reduce fitness and are highly attractive, and (ii) species with high intrinsic fitness will be most susceptible. We provide the first evidence that (iii) traps may be beneficial for metapopulations in rare instances, and (iv) preferences for natal-like habitats can magnify the effects of traps. Our study provides important insight into the effects of traps at landscape scales, and highlights the need to explicitly consider spatial context to better understand and manage traps within metapopulations

    Identifying the key biophysical drivers, connectivity outcomes, and metapopulation consequences of larval dispersal in the sea

    Get PDF
    BACKGROUND: Population connectivity, which is essential for the persistence of benthic marine metapopulations, depends on how life history traits and the environment interact to influence larval production, dispersal and survival. Although we have made significant advances in our understanding of the spatial and temporal dynamics of these individual processes, developing an approach that integrates the entire population connectivity process from reproduction, through dispersal, and to the recruitment of individuals has been difficult. We present a population connectivity modelling framework and diagnostic approach for quantifying the impact of i) life histories, ii) demographics, iii) larval dispersal, and iv) the physical seascape, on the structure of connectivity and metapopulation dynamics. We illustrate this approach using the subtidal rocky reef ecosystem of Port Phillip Bay, were we provide a broadly-applicable framework of population connectivity and quantitative methodology for evaluating the relative importance of individual factors in determining local and system outcomes. RESULTS: The spatial characteristics of marine population connectivity are primarily influenced by larval mortality, the duration of the pelagic larval stage, and the settlement competency characteristics, with significant variability imposed by the geographic setting and the timing of larval release. The relative influence and the direction and strength of the main effects were strongly consistent among 10 connectivity-based metrics. CONCLUSIONS: These important intrinsic factors (mortality, length of the pelagic larval stage, and the extent of the precompetency window) and the spatial and temporal variability represent key research priorities for advancing our understanding of the connectivity process and metapopulation outcomes

    Independent estimates of marine population connectivity are more concordant when accounting for uncertainties in larval origins

    Get PDF
    Marine larval dispersal is a complex biophysical process that depends on the effects of species biology and oceanography, leading to logistical difficulties in estimating connectivity among populations of marine animals with biphasic life cycles. To address this challenge, the application of multiple methodological approaches has been advocated, in order to increase confidence in estimates of population connectivity. However, studies seldom account for sources of uncertainty associated with each method, which undermines a direct comparative approach. In the present study we explicitly account for the statistical uncertainty in observed connectivity matrices derived from elemental chemistry of larval mussel shells, and compare these to predictions from a biophysical model of dispersal. To do this we manipulate the observed connectivity matrix by applying different confidence levels to the assignment of recruits to source populations, while concurrently modelling the intrinsic misclassification rate of larvae to known sources. We demonstrate that the correlation between the observed and modelled matrices increases as the number of observed recruits classified as unknowns approximates the observed larval misclassification rate. Using this approach, we show that unprecedented levels of concordance in connectivity estimates (r = 0.96) can be achieved, and at spatial scales (20–40 km) that are ecologically relevant.Fundação para a Ciência e Tecnologia | Ref. PTDC/BIA-BIC/120483/2010Xunta de Galicia | Ref. POS-A/2012/189Xunta de Galicia | Ref. POS-B/2016/032Fundação para a Ciência e Tecnologia | Ref. SFRH/BD/ 84263/2012CESAM | Ref. UID/AMB/50017 - POCI-01-0145-FEDER-00763

    Prevention of Alzheimer's disease in high risk groups: statin therapy in subjects with PSEN1 mutations or heterozygosity for apolipoprotein E epsilon 4

    Get PDF
    Because cerebrospinal fluid (CSF) abnormalities in presymptomatic subjects with PSEN1 (presenilin 1) mutations may be observed 4 to 12 years prior to the estimated age at onset, it is possible to test putative therapies on the CSF analytes that correlate with neurodegeneration during this presymptomatic window of clinical opportunity. It is also possible to test the same therapy on a comparison group with increased risk status conferred by both hyperlipidemia and heterozygosity for apolipoprotein Eε4. To our knowledge, the only putative therapy thus far tested in such a common design has been statin therapy. The results of these tests show increases in soluble amyloid precursor protein (sAPP)α correlating with statin-induced decreases in serum cholesterol levels in the non-PSEN1 subjects. This result could be one functional correlate for part of the substantial risk reduction for late onset Alzheimer\u27s disease recently reported in the Rotterdam study, a large, long-term prospective statin trial. Statin therapy significantly decreased both sAPPα and sAPPβ in presymptomatic PSEN1 subjects. Initially, elevated phospho-tau levels in PSEN1 subjects did not further increase during the 2 to 3 years of statin therapy, possibly indicative of a prophylactic effect. These results suggest that large and longer term trials of statin therapy correlating changes in CSF biomarker levels with clinical course may be warranted in both presymptomatic PSEN1 and non-PSEN1 subjects

    Barrens of gold: gonad conditioning of an overabundant sea urchin

    Full text link
    Overgrazing by the overabundant native purple urchin Heliocidaris erythrogramma has caused kelp-dominated reefs to shift to urchin barrens throughout southeastern Australia. These areas are characterised by low kelp abundance, low biodiversity and high urchin densities. As purple urchin gonads are a delicacy in many countries, commercial harvest from barrens could aid kelp recovery. However, the lack of macroalgae in these habitats, driven by high urchin densities, results in urchins with small, poor-quality roe that is commercially undesirable. To overcome this, we assessed whether urchin gonad quantity and quality could be improved with access to high-quality feed and optimal environmental conditions, a process known as &lsquo;gonad conditioning&rsquo;. Specifically, we (1) surveyed the quality of urchins from barrens and kelp sites in Port Phillip Bay, Australia, over 18 mo and (2) tested if gonad conditioning was effective on urchins from barrens during and after the harvest season. Field surveys revealed considerable variation in gonad size across sites, habitats and collection periods (mean gonad index range: 3 to 12%). Gonad conditioning with the best diet increased urchin gonad size by up to 2.8 times during the harvest season. Moreover, gonads of conditioned urchins from one barren were 3 times brighter in colour and contained lower concentrations of arsenic than wild urchins. In contrast, gonad conditioning at 22&deg;C after the harvest season was ineffective. Our results show that targeted in-season harvest from barrens and subsequent gonad conditioning produces roe of commercial quality, promoting the use of urchin fisheries as a tool for managing urchin barrens.<br /

    Does fish larval dispersal differ between high and low latitudes?

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of The Royal Society for personal use, not for redistribution. The definitive version was published in Proceedings of the Royal Society B Biological Sciences 280 (2013): 20130327, doi:10.1098/rspb.2013.0327.Several factors lead to expectations that the scale of larval dispersal and population connectivity of marine animals differs with latitude. We examine this expectation for demersal shorefishes, including relevant mechanisms, assumptions, and evidence. We explore latitudinal differences in: 1) biological (e.g., species composition, spawning mode, pelagic larval duration (PLD)), 2) physical (e.g., water movement, habitat fragmentation), and 3) biophysical factors (primarily temperature, which could strongly affect development, swimming ability, or feeding). Latitudinal differences exist in taxonomic composition, habitat fragmentation, temperature, and larval swimming, and each could influence larval dispersal. Nevertheless, clear evidence for latitudinal differences in larval dispersal at the level of broad faunas is lacking. For example, PLD is strongly influenced by taxon, habitat, and geographic region, but no independent latitudinal trend is present in published PLD values. Any trends in larval dispersal may be obscured by a lack of appropriate information, or use of ‘off the shelf’ information that is biased with regard to the species assemblages in areas of concern. Biases may also be introduced from latitudinal differences in taxa or spawning modes, as well as limited latitudinal sampling. We suggest research to make progress on the question of latitudinal trends in larval dispersal.TK was supported by the Norwegian Research Council through project MENUII #190286. JML was supported by ARC Discovery Grant DP110100695. JEC and RRW were supported by the Partnership for the Interdisciplinary Study of Coastal Oceans, funded by The David and Lucille Packard Foundation and the Gordon and Betty Moore Foundation.2014-03-2

    Large-Scale Variation in Wave Attenuation of Oyster Reef Living Shorelines and the Influence of Inundation Duration

    Get PDF
    One of the paramount goals of oyster reef living shorelines is to achieve sustained and adaptive coastal protection, which requires meeting ecological (i.e., develop a self-sustaining oyster population) and engineering (i.e., provide coastal defense) targets. In a large-scale comparison along the Atlantic and Gulf coasts of the United States, the efficacy of various designs of oyster reef living shorelines at providing wave attenuation was evaluated accounting for the ecological limitations of oysters with regards to inundation duration. A critical threshold for intertidal oyster reef establishment is 50% inundation duration. Living shorelines that spent less than half of the time (\u3c 50%) inundated were not considered suitable habitat for oysters, however, were effective at wave attenuation (68% reduction in wave height). Reefs that experienced \u3e 50% inundation were considered suitable habitat for oysters, but wave attenuation was similar to controls (no reef; ~5% reduction in wave height). Many of the oyster reef living shoreline approaches therefore failed to optimize the ecological and engineering goals. In both inundation regimes, wave transmission decreased with an increasing freeboard (difference between reef crest elevation and water level), supporting its importance in the wave attenuation capacity of oyster reef living shorelines. However, given that the reef crest elevation (and thus freeboard) should be determined by the inundation duration requirements of oysters, research needs to be re-focused on understanding the implications of other reef parameters (e.g. width) for optimising wave attenuation. A broader understanding of the reef characteristics and seascape contexts that result in effective coastal defense by oyster reefs is needed to inform appropriate design and implementation of oyster-based living shorelines globally

    Larval Connectivity in an Effective Network of Marine Protected Areas

    Get PDF
    Acceptance of marine protected areas (MPAs) as fishery and conservation tools has been hampered by lack of direct evidence that MPAs successfully seed unprotected areas with larvae of targeted species. For the first time, we present direct evidence of large-scale population connectivity within an existing and effective network of MPAs. A new parentage analysis identified four parent-offspring pairs from a large, exploited population of the coral-reef fish Zebrasoma flavescens in Hawai'i, revealing larval dispersal distances ranging from 15 to 184 km. In two cases, successful dispersal was from an MPA to unprotected sites. Given high adult abundances, the documentation of any parent-offspring pairs demonstrates that ecologically-relevant larval connectivity between reefs is substantial. All offspring settled at sites to the north of where they were spawned. Satellite altimetry and oceanographic models from relevant time periods indicated a cyclonic eddy that created prevailing northward currents between sites where parents and offspring were found. These findings empirically demonstrate the effectiveness of MPAs as useful conservation and management tools and further highlight the importance of coupling oceanographic, genetic, and ecological data to predict, validate and quantify larval connectivity among marine populations

    Describing and understanding behavioral responses to multiple stressors and multiple stimuli

    Get PDF
    Understanding the effects of environmental change on natural ecosystems is a major challenge, particularly when multiple stressors interact to produce unexpected “ecological surprises” in the form of complex, nonadditive effects that can amplify or reduce their individual effects. Animals often respond behaviorally to environmental change, and multiple stressors can have both population-level and community-level effects. However, the individual, not combined, effects of stressors on animal behavior are commonly studied. There is a need to understand how animals respond to the more complex combinations of stressors that occur in nature, which requires a systematic and rigorous approach to quantify the various potential behavioral responses to the independent and interactive effects of stressors. We illustrate a robust, systematic approach for understanding behavioral responses to multiple stressors based on integrating schemes used to quantitatively classify interactions in multiple-stressor research and to qualitatively view interactions between multiple stimuli in behavioral experiments. We introduce and unify the two frameworks, highlighting their conceptual and methodological similarities, and use four case studies to demonstrate how this unification could improve our interpretation of interactions in behavioral experiments and guide efforts to manage the effects of multiple stressors. Our unified approach: (1) provides behavioral ecologists with a more rigorous and systematic way to quantify how animals respond to interactions between multiple stimuli, an important theoretical advance, (2) helps us better understand how animals behave when they encounter multiple, potentially interacting stressors, and (3) contributes more generally to the understanding of “ecological surprises” in multiple stressors research
    corecore