294 research outputs found
The Importance of Age Dependent Mortality and the Extrinsic Incubation Period in Models of Mosquito-Borne Disease Transmission and Control
Nearly all mathematical models of vector-borne diseases have assumed that vectors die at constant rates. However, recent empirical research suggests that mosquito mortality rates are frequently age dependent. This work develops a simple mathematical model to assess how relaxing the classical assumption of constant mortality affects the predicted effectiveness of anti-vectorial interventions. The effectiveness of mosquito control when mosquitoes die at age dependent rates was also compared across different extrinsic incubation periods. Compared to a more realistic age dependent model, constant mortality models overestimated the sensitivity of disease transmission to interventions that reduce mosquito survival. Interventions that reduce mosquito survival were also found to be slightly less effective when implemented in systems with shorter EIPs. Future transmission models that examine anti-vectorial interventions should incorporate realistic age dependent mortality rates
Refined Simulations of the Reaction Front for Diffusion-Limited Two-Species Annihilation in One Dimension
Extensive simulations are performed of the diffusion-limited reaction
AB in one dimension, with initially separated reagents. The reaction
rate profile, and the probability distributions of the separation and midpoint
of the nearest-neighbour pair of A and B particles, are all shown to exhibit
dynamic scaling, independently of the presence of fluctuations in the initial
state and of an exclusion principle in the model. The data is consistent with
all lengthscales behaving as as . Evidence of
multiscaling, found by other authors, is discussed in the light of these
findings.Comment: Resubmitted as TeX rather than Postscript file. RevTeX version 3.0,
10 pages with 16 Encapsulated Postscript figures (need epsf). University of
Geneva preprint UGVA/DPT 1994/10-85
Chemistry and pathways to net zero for sustainability
Chemistry needs to play a central role in achieving ‘net zero’ emissions of greenhouse gases (GHGs) into the atmosphere to prevent changes to the climate that will have catastrophic impacts for humanity and for many ecosystems on the planet. International action to limit global warming to 1.5 °C has framed as a key goal the reduction of global emissions to as close to zero as possible by 2050, with any remaining emissions re-absorbed from the atmosphere. Chemistry underpins innovative approaches to reducing emission of the key GHGs, comprising CO2, CH4, N2O and fluorinated gases, and to the recapture of gases already in the atmosphere. Rapid progress is needed in the application of green and sustainable chemistry and material circularity principles in developing these approaches worldwide. Of critical importance will be the incorporation of systems thinking, recognition of planetary boundaries that define safe operating spaces for Earth systems, and an overall reorientation of chemistry towards its roles in stewardship of the Earth's material resources and in sustainability for people and the planet.</p
A shared future:Chemistry's engagement is essential for resilience of people and planet
Strengthening resilience—elasticity or adaptive capacity—is essential in responding to the wide range of natural hazards and anthropogenic changes humanity faces. Chemistry's roles in resilience are explored for the first time, with its technical capacities set in the wider contexts of cross-disciplinary working and the intersecting worlds of science, society and policy. The roles are framed by chemistry's contributions to the sustainability of people and planet, examined via the human security framework's four material aspects of food, health, economic and environmental security. As the science of transformation of matter, chemistry is deeply involved in these material aspects and in their interfacing with human security's three societal and governance aspects of personal, community and political security. Ultimately, strengthening resilience requires making choices about the present use of resources as a hedge against future hazards and adverse events, with these choices being co-determined by technical capacities and social and political will. It is argued that, to intensify its contributions to resilience, chemistry needs to take action along at least three major lines: (i) taking an integrative approach to the field of ‘chemistry and resilience’; (ii) rethinking how the chemical industry operates; and (iii) engaging more with society and policy-makers
Nontrivial Exponent for Simple Diffusion
The diffusion equation \partial_t\phi = \nabla^2\phi is considered, with
initial condition \phi( _x_ ,0) a gaussian random variable with zero mean.
Using a simple approximate theory we show that the probability p_n(t_1,t_2)
that \phi( _x_ ,t) [for a given space point _x_ ] changes sign n times between
t_1 and t_2 has the asymptotic form p_n(t_1,t_2) \sim
[\ln(t_2/t_1)]^n(t_1/t_2)^{-\theta}. The exponent \theta has predicted values
0.1203, 0.1862, 0.2358 in dimensions d=1,2,3, in remarkably good agreement with
simulation results.Comment: Minor typos corrected, affecting table of exponents. 4 pages, REVTEX,
1 eps figure. Uses epsf.sty and multicol.st
Domain Growth in a 1-D Driven Diffusive System
The low-temperature coarsening dynamics of a one-dimensional Ising model,
with conserved magnetisation and subject to a small external driving force, is
studied analytically in the limit where the volume fraction \mu of the minority
phase is small, and numerically for general \mu. The mean domain size L(t)
grows as t^{1/2} in all cases, and the domain-size distribution for domains of
one sign is very well described by the form P_l(l) \propto
(l/L^3)\exp[-\lambda(\mu)(l^2/L^2)], which is exact for small \mu (and possibly
for all \mu). The persistence exponent for the minority phase has the value 3/2
for \mu \to 0.Comment: 8 pages, REVTeX, 7 Postscript figures, uses multicol.sty and
epsf.sty. Submitted to Phys. Rev.
Non-Markovian Persistence and Nonequilibrium Critical Dynamics
The persistence exponent \theta for the global order parameter, M(t), of a
system quenched from the disordered phase to its critical point describes the
probability, p(t) \sim t^{-\theta}, that M(t) does not change sign in the time
interval t following the quench. We calculate \theta to O(\epsilon^2) for model
A of critical dynamics (and to order \epsilon for model C) and show that at
this order M(t) is a non-Markov process. Consequently, \theta is a new
exponent. The calculation is performed by expanding around a Markov process,
using a simplified version of the perturbation theory recently introduced by
Majumdar and Sire [Phys. Rev. Lett. _77_, 1420 (1996); cond-mat/9604151].Comment: 4 pages, Revtex, no figures, requires multicol.st
Gender Difference in 2-Year Mortality and Immunological Response to ART in an HIV-Infected Chinese Population, 2006–2008
Since it was initiated in 2002, the China Free Antiretroviral Treatment (ART) Program has been progressing from an emergency response to a standardized treatment and care system. As of December 31, 2009, a total of 81,880 patients in 31 provinces, autonomous regions, and special municipalities received free ART. Gender differences, however, in mortality and immunological response to ART in this cohort have never been described.To understand whether women and men who enrolled in the China National Free ART Program responded equally well to the treatment.A retrospective analysis of the national free ART databases from June 2006-December 2008 was performed. HIV-infected subjects who were 18 years or older, ART naïve at baseline, and on a 3TC regimen enrolled in the program from June 1 to December 31, 2006, were included in this study, then followed up to 2 years.Among 3457 enrolled subjects who met the inclusion criteria, 59.2% were male and 40.8% female. The majority of the subjects were 19-44 years old (77%) and married (72%). Over the full 24 months of follow-up, the mortality rate was 19.0% in males and 11.4% in females (p = 0.0014). Males on therapy for 3-24 months were more likely to die than females (HR = 1.46, 95% CI: 1.04-2.06, p = 0.0307) after adjusting for baseline characteristics. Compared to men, women had higher CD4+ counts over time after initiating ART (p<0.0001).Our study showed that women had an overall lower mortality and higher CD4+ counts than men in response to ART treatment, which may be attributed to adherence, biological factors, social, cultural and economic reasons. Further study is needed to explore these factors that might contribute to the gender differences in mortality and immunological response to ART
Anticipating and Managing Future Trade-offs and Complementarities between Ecosystem Services
This paper shows how, with the aid of computer models developed in close collaboration with decision makers and other stakeholders, it is possible to quantify and map how policy decisions are likely to affect multiple ecosystem services in future. In this way, potential trade-offs and complementarities between different ecosystem services can be identified, so that policies can be designed to avoid the worst trade-offs, and where possible, enhance multiple services. The paper brings together evidence from across the Rural Economy and Land Use Programme’s Sustainable Uplands project for the first time, with previously unpublished model outputs relating to runoff, agricultural suitability, biomass, heather cover, age, and utility for Red Grouse (Lagopus scotica), grass cover, and accompanying scenario narratives and video. Two contrasting scenarios, based on policies to extensify or intensify land management up to 2030, were developed through a combination of interviews and discussions during site visits with stakeholders, literature review, conceptual modeling, and process-based computer models, using the Dark Peak of the Peak District National Park in the UK as a case study. Where extensification leads to a significant reduction in managed burning and grazing or land abandonment, changes in vegetation type and structure could compromise a range of species that are important for conservation, while compromising provisioning services, amenity value, and increasing wildfire risk. However, where extensification leads to the restoration of peatlands damaged by former intensive management, there would be an increase in carbon sequestration and storage, with a number of cobenefits, which could counter the loss of habitats and species elsewhere in the landscape. In the second scenario, land use and management was significantly intensified to boost UK self-sufficiency in food. This would benefit certain provisioning services but would have negative consequences for carbon storage and water quality and would lead to a reduction in the abundance of certain species of conservation concern. The paper emphasizes the need for spatially explicit models that can track how ecosystem services might change over time, in response to policy or environmental drivers, and in response to the changing demands and preferences of society, which are far harder to anticipate. By developing such models in close collaboration with decision makers and other stakeholders, it is possible to depict scenarios of real concern to those who need to use the research findings. By engaging these collaborators with the research findings through film, it was possible to discuss adaptive options to minimize trade-offs and enhance the provision of multiple ecosystem services under the very different future conditions depicted by each scenario. By preparing for as wide a range of futures as possible in this way, it may be possible for decision makers to act rapidly and effectively to protect and enhance the provision of ecosystem services in the face of unpredictable future change.Additional co-authors: Nanlin Jin, Brian J Irvine, Mike J Kirkby, William E Kunin, Christina Prell, Claire H Quinn, Bill Slee, Sigrid Stagl, Mette Termansen, Simon Thorp, and Fred Worral
- …