80 research outputs found

    Injury to Competition/Consumers in High Tech Cases

    Get PDF

    Antitrust Enforcement in High Tech Industries

    Get PDF

    Antitrust Enforcement in High Tech Industries

    Get PDF

    Gene expression profiling identifies genes predictive of oral squamous cell carcinoma

    Get PDF
    Oral squamous cell carcinoma (OSCC) is associated with substantial mortality and morbidity. To identify potential biomarkers for early detection of invasive OSCC, we compared gene expression of incident primary OSCC, oral dysplasia, and clinically normal oral tissue from surgical patients without head and neck cancer or pre-neoplastic oral lesions (controls), using Affymetrix U133 2.0 Plus arrays. We identified 131 differentially expressed probe sets using a training set of 119 OSCC patients and 35 controls. Forward and stepwise logistic regression analyses identified 10 successive combinations of genes which expression differentiated OSCC from controls. The best model included LAMC2, encoding laminin gamma 2 chain, and COL4A1, encoding collagen, type IV, alpha 1 chain. Subsequent modeling without these two markers showed that COL1A1, encoding collagen, type I, alpha 1 chain, and PADI1, encoding peptidyl arginine deiminase, type 1, also can distinguish OSCC from controls. We validated these two models using an internal independent testing set of 48 invasive OSCC and 10 controls and an external testing set of 42 head and neck squamous cell carcinoma (HNSCC) cases and 14 controls (GEO GSE6791), with sensitivity and specificity above 95%. These two models were also able to distinguish dysplasia (n=17) from control (n=35) tissue. Differential expression of these four genes was confirmed by qRT-PCR. If confirmed in larger studies, the proposed models may hold promise for monitoring local recurrence at surgical margins and the development of second primary oral cancer in OSCC patients

    Genomewide gene expression profiles of HPV-positive and HPV-negative oropharyngeal cancer: potential implications for treatment choices.

    Get PDF
    OBJECTIVE: To study the difference in gene expression between human papillomavirus (HPV)-positive and HPV-negative oral cavity and oropharyngeal squamous cell carcinoma (OSCC). DESIGN: We used Affymetrix U133 plus 2.0 arrays to examine gene expression profiles of OSCC and normal oral tissue. The HPV DNA was detected using polymerase chain reaction followed by the Roche LINEAR ARRAY HPV Genotyping Test, and the differentially expressed genes were analyzed to examine their potential biological roles using the Ingenuity Pathway Analysis Software, version 5.0. SETTING: Three medical centers affiliated with the University of Washington. PATIENTS: A total of 119 patients with primary OSCC and 35 patients without cancer, all of whom were treated at the setting institutions, provided tissues samples for the study. RESULTS: Human papillomavirus DNA was found in 41 of 119 tumors (34.5%) and 2 of 35 normal tissue samples (5.7%); 39 of the 43 HPV specimens were HPV-16. A higher prevalence of HPV DNA was found in oropharyngeal cancer (23 of 31) than in oral cavity cancer (18 of 88). We found no significant difference in gene expression between HPV-positive and HPV-negative oral cavity cancer but found 446 probe sets (347 known genes) differentially expressed in HPV-positive oropharyngeal cancer than in HPV-negative oropharyngeal cancer. The most prominent functions of these genes are DNA replication, DNA repair, and cell cycling. Some genes differentially expressed between HPV-positive and HPV-negative oropharyngeal cancer (eg, TYMS, STMN1, CCND1, and RBBP4) are involved in chemotherapy or radiation sensitivity. CONCLUSION: These results suggest that differences in the biology of HPV-positive and HPV-negative oropharyngeal cancer may have implications for the management of patients with these different tumors

    Integrative analysis of DNA copy number and gene expression in metastatic oral squamous cell carcinoma identifies genes associated with poor survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lymphotropism in oral squamous cell carcinoma (OSCC) is one of the most important prognostic factors of 5-year survival. In an effort to identify genes that may be responsible for the initiation of OSCC lymphotropism, we examined DNA copy number gains and losses and corresponding gene expression changes from tumor cells in metastatic lymph nodes of patients with OSCC.</p> <p>Results</p> <p>We performed integrative analysis of DNA copy number alterations (CNA) and corresponding mRNA expression from OSCC cells isolated from metastatic lymph nodes of 20 patients using Affymetrix 250 K Nsp I SNP and U133 Plus 2.0 arrays, respectively. Overall, genome CNA accounted for expression changes in 31% of the transcripts studied. Genome region 11q13.2-11q13.3 shows the highest correlation between DNA CNA and expression. With a false discovery rate < 1%, 530 transcripts (461 genes) demonstrated a correlation between CNA and expression. Among these, we found two subsets that were significantly associated with OSCC (n = 122) when compared to controls, and with survival (n = 27), as tested using an independent dataset with genome-wide expression profiles for 148 primary OSCC and 45 normal oral mucosa. We fit Cox models to calculate a principal component analysis-derived risk-score for these two gene sets ('122-' or '27-transcript PC'). The models combining the 122- or 27-transcript PC with stage outperformed the model using stage alone in terms of the Area Under the Curve (AUC = 0.82 or 0.86 vs. 0.72, with <it>p </it>= 0.044 or 0.011, respectively).</p> <p>Conclusions</p> <p>Genes exhibiting CNA-correlated expression may have biological impact on carcinogenesis and cancer progression in OSCC. Determination of copy number-associated transcripts associated with clinical outcomes in tumor cells with an aggressive phenotype (i.e., cells metastasized to the lymph nodes) can help prioritize candidate transcripts from high-throughput data for further studies.</p

    Statistical Characterization of the Chandra Source Catalog

    Full text link
    The first release of the Chandra Source Catalog (CSC) contains ~95,000 X-ray sources in a total area of ~0.75% of the entire sky, using data from ~3,900 separate ACIS observations of a multitude of different types of X-ray sources. In order to maximize the scientific benefit of such a large, heterogeneous data-set, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Characterization efforts of other, large Chandra catalogs, such as the ChaMP Point Source Catalog (Kim et al. 2007) or the 2 Mega-second Deep Field Surveys (Alexander et al. 2003), while informative, cannot serve this purpose, since the CSC analysis procedures are significantly different and the range of allowable data is much less restrictive. We describe here the characterization process for the CSC. This process includes both a comparison of real CSC results with those of other, deeper Chandra catalogs of the same targets and extensive simulations of blank-sky and point source populations.Comment: To be published in the Astrophysical Journal Supplement Series (Fig. 52 replaced with a version which astro-ph can convert to PDF without issues.

    The Chandra Source Catalog

    Get PDF
    The Chandra Source Catalog (CSC) is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime. The first release of the CSC includes information about 94,676 distinct X-ray sources detected in a subset of public ACIS imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents <~ 30''. The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports scientific analysis using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; and (3) provides efficient access to calibrated observational data and ancillary data products for individual X-ray sources, so that users can perform detailed further analysis using existing tools. The catalog includes real X-ray sources detected with flux estimates that are at least 3 times their estimated 1 sigma uncertainties in at least one energy band, while maintaining the number of spurious sources at a level of <~ 1 false source per field for a 100 ks observation. For each detected source, the CSC provides commonly tabulated quantities, including source position, extent, multi-band fluxes, hardness ratios, and variability statistics, derived from the observations in which the source is detected. In addition to these traditional catalog elements, for each X-ray source the CSC includes an extensive set of file-based data products that can be manipulated interactively.Comment: To appear in The Astrophysical Journal Supplement Series, 53 pages, 27 figure

    Chemical profiles of the oxides on tantalum in state of the art superconducting circuits

    Full text link
    Over the past decades, superconducting qubits have emerged as one of the leading hardware platforms for realizing a quantum processor. Consequently, researchers have made significant effort to understand the loss channels that limit the coherence times of superconducting qubits. A major source of loss has been attributed to two level systems that are present at the material interfaces. We recently showed that replacing the metal in the capacitor of a transmon with tantalum yields record relaxation and coherence times for superconducting qubits, motivating a detailed study of the tantalum surface. In this work, we study the chemical profile of the surface of tantalum films grown on c-plane sapphire using variable energy X-ray photoelectron spectroscopy (VEXPS). We identify the different oxidation states of tantalum that are present in the native oxide resulting from exposure to air, and we measure their distribution through the depth of the film. Furthermore, we show how the volume and depth distribution of these tantalum oxidation states can be altered by various chemical treatments. By correlating these measurements with detailed measurements of quantum devices, we can improve our understanding of the microscopic device losses

    Prediction of survival of HPV16-negative, p16-negative oral cavity cancer patients using a 13-gene signature: A multicenter study using FFPE samples

    Get PDF
    Objectives: To WA the performance of an oral cancer prognostic 13-gene signature for the prediction of survival of patients diagnosed with HPV-negative and p16-negative oral cavity cancer. Materials and Methods: Diagnostic formalin-fixed paraffin-embedded oral cavity cancer tumor samples were obtained from the Fred Hutchinson Cancer Research Center/University of Washington, University of Calgary, University of Michigan, University of Utah, and seven ARCAGE study centers coordinated by the International Agency of Research on Cancer. RNA from 638 Human Papillomavirus (HPV)-negative and p16-negative samples was analyzed for the 13 genes using a NanoString assay. Ridge-penalized Cox regressions were applied to samples randomly split into discovery and validation sets to build models and evaluate the performance of the 13-gene signature in predicting 2-year oral cavity cancer-specific survival overall and separately for patients with early and late stage disease. Results: Among AJCC stage I/II patients, including the 13-gene signature in the model resulted in substantial improvement in the prediction of 2-year oral cavity cancer-specific survival. For models containing age and sex with and without the 13-gene signature score, the areas under the Receiver Operating Characteristic Curve (AUC) and partial AUC were 0.700 vs. 0.537 (p < 0.001), and 0.046 vs. 0.018 (p < 0.001), respectively. Improvement in predicting prognosis for AJCC stage III/IV disease also was observed, but to a lesser extent. Conclusions: If confirmed using tumor samples from a larger number of early stage oral cavity cancer patients, the 13-gene signature may inform personalized treatment of early stage HPV-negative and p16-negative oral cavity cancer patients
    corecore