861 research outputs found

    Optimizing qubit Hamiltonian parameter estimation algorithms using PSO

    Full text link
    We develop qubit Hamiltonian single parameter estimation techniques using a Bayesian approach. The algorithms considered are restricted to projective measurements in a fixed basis, and are derived under the assumption that the qubit measurement is much slower than the characteristic qubit evolution. We optimize a non-adaptive algorithm using particle swarm optimization (PSO) and compare with a previously-developed locally-optimal scheme.Comment: 3 pages, 2 figures, presented at 2012 IEEE Congress on Evolutionary Computation, to be published in the proceeding

    Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement

    Get PDF
    We introduce methods for clock synchronization that make use of the adiabatic exchange of nondegenerate two-level quantum systems: ticking qubits. Schemes involving the exchange of N independent qubits with frequency ω\omega give a synchronization accuracy that scales as (ωN)1(\omega\sqrt{N})^{-1}, i.e., as the standard quantum limit. We introduce a protocol that makes use of N coherent exchanges of a single qubit at frequency ω\omega, leading to an accuracy that scales as (ωN)1logN(\omega N)^{-1}\log N. This protocol beats the standard quantum limit without the use of entanglement, and we argue that this scaling is the fundamental limit for clock synchronization allowed by quantum mechanics. We analyse the performance of these protocols when used with a lossy channel.Comment: 9 pages, 1 figure, published versio

    Symmetry-protected self-correcting quantum memories

    Full text link
    A self-correcting quantum memory can store and protect quantum information for a time that increases without bound with the system size and without the need for active error correction. We demonstrate that symmetry can lead to self-correction in 3D spin-lattice models. In particular, we investigate codes given by 2D symmetry-enriched topological (SET) phases that appear naturally on the boundary of 3D symmetry-protected topological (SPT) phases. We find that while conventional on-site symmetries are not sufficient to allow for self-correction in commuting Hamiltonian models of this form, a generalized type of symmetry known as a 1-form symmetry is enough to guarantee self-correction. We illustrate this fact with the 3D "cluster-state" model from the theory of quantum computing. This model is a self-correcting memory, where information is encoded in a 2D SET-ordered phase on the boundary that is protected by the thermally stable SPT ordering of the bulk. We also investigate the gauge color code in this context. Finally, noting that a 1-form symmetry is a very strong constraint, we argue that topologically ordered systems can possess emergent 1-form symmetries, i.e., models where the symmetry appears naturally, without needing to be enforced externally.Comment: 39 pages, 16 figures, comments welcome; v2 includes much more explicit detail on the main example model, including boundary conditions and implementations of logical operators through local moves; v3 published versio

    Optical spin-1 chain and its use as a quantum computational wire

    Full text link
    Measurement-based quantum computing, a powerful alternative to the standard circuit model, proceeds using only local adaptive measurements on a highly-entangled resource state of many spins on a graph or lattice. Along with the canonical cluster state, the valence-bond solid ground state on a chain of spin-1 particles, studied by Affleck, Kennedy, Lieb, and Tasaki (AKLT), is such a resource state. We propose a simulation of this AKLT state using linear optics, wherein we can make use of the high-fidelity projective measurements that are commonplace in quantum optical experiments, and describe how quantum logic gates can be performed on this chain. In our proposed implementation, the spin-1 particles comprizing the AKLT state are encoded on polarization biphotons: three level systems consisting of pairs of polarized photons in the same spatio-temporal mode. A logical qubit encoded on the photonic AKLT state can be initialized, read out and have an arbitrary single qubit unitary applied to it by performing projective measurements on the constituent biphotons. For MBQC, biphoton measurements are required which cannot be deterministically performed using only linear optics and photodetection.Comment: 9 pages, 4 figures, published versio

    Stacked codes: universal fault-tolerant quantum computation in a two-dimensional layout

    Full text link
    We introduce a class of 3D color codes, which we call stacked codes, together with a fault-tolerant transformation that will map logical qubits encoded in two-dimensional (2D) color codes into stacked codes and back. The stacked code allows for the transversal implementation of a non-Clifford π/8\pi/8 logical gate, which when combined with the logical Clifford gates that are transversal in the 2D color code give a gate set which is both fault-tolerant and universal without requiring nonstabilizer magic states. We then show that the layers forming the stacked code can be unfolded and arranged in a 2D layout. As only Clifford gates can be implemented transversally for 2D topological stabilizer codes, a non-local operation must be incorporated in order to allow for this transversal application of a non-Clifford gate. Our code achieves this operation through the transformation from a 2D color code to the unfolded stacked code induced by measuring only geometrically local stabilizers and gauge operators within the bulk of 2D color codes together with a nonlocal operator that has support on a one-dimensional boundary between such 2D codes. We believe that this proposed method to implement the non-local operation is a realistic one for 2D stabilizer layouts and would be beneficial in avoiding the large overheads caused by magic state distillation.Comment: 14 pages, 6 figures, comments welcome. Note our construction is very similar to recent results by Bravyi and Cross reported in arXiv:1509.03239. Version 2 contains minor change
    corecore