45 research outputs found

    Ketone Body Metabolism in the Ischemic Heart

    Get PDF
    Ketone bodies have been identified as an important, alternative fuel source in heart failure. In addition, the use of ketone bodies as a fuel source has been suggested to be a potential ergogenic aid for endurance exercise performance. These findings have certainly renewed interest in the use of ketogenic diets and exogenous supplementation in an effort to improve overall health and disease. However, given the prevalence of ischemic heart disease and myocardial infarctions, these strategies may not be ideal for individuals with coronary artery disease. Although research studies have clearly defined changes in fatty acid and glucose metabolism during ischemia and reperfusion, the role of ketone body metabolism in the ischemic and reperfused myocardium is less clear. This review will provide an overview of ketone body metabolism, including the induction of ketosis via physiological or nutritional strategies. In addition, the contribution of ketone body metabolism in healthy and diseased states, with a particular emphasis on ischemia-reperfusion (I-R) injury will be discussed

    Assessment of Cardiac Function and Energetics in Isolated Mouse Hearts Using 31P NMR Spectroscopy

    Get PDF
    Bioengineered mouse models have become powerful research tools in determining causal relationships between molecular alterations and models of cardiovascular disease. Although molecular biology is necessary in identifying key changes in the signaling pathway, it is not a surrogate for functional significance. While physiology can provide answers to the question of function, combining physiology with biochemical assessment of metabolites in the intact, beating heart allows for a complete picture of cardiac function and energetics. For years, our laboratory has utilized isolated heart perfusions combined with nuclear magnetic resonance (NMR) spectroscopy to accomplish this task. Left ventricular function is assessed by Langendorff-mode isolated heart perfusions while cardiac energetics is measured by performing 31P magnetic resonance spectroscopy of the perfused hearts. With these techniques, indices of cardiac function in combination with levels of phosphocreatine and ATP can be measured simultaneously in beating hearts. Furthermore, these parameters can be monitored while physiologic or pathologic stressors are instituted. For example, ischemia/reperfusion or high workload challenge protocols can be adopted. The use of aortic banding or other models of cardiac pathology are apt as well. Regardless of the variants within the protocol, the functional and energetic significance of molecular modifications of transgenic mouse models can be adequately described, leading to new insights into the associated enzymatic and metabolic pathways. Therefore, 31P NMR spectroscopy in the isolated perfused heart is a valuable research technique in animal models of cardiovascular disease

    Ketogenic Diets and Exercise Performance

    Get PDF
    The ketogenic diet (KD) has gained a resurgence in popularity due to its purported reputation for fighting obesity. The KD has also acquired attention as an alternative and/or supplemental method for producing energy in the form of ketone bodies. Recent scientific evidence highlights the KD as a promising strategy to treat obesity, diabetes, and cardiac dysfunction. In addition, studies support ketone body supplements as a potential method to induce ketosis and supply sustainable fuel sources to promote exercise performance. Despite the acceptance in the mainstream media, the KD remains controversial in the medical and scientific communities. Research suggests that the KD or ketone body supplementation may result in unexpected side effects, including altered blood lipid profiles, abnormal glucose homeostasis, increased adiposity, fatigue, and gastrointestinal distress. The purpose of this review article is to provide an overview of ketone body metabolism and a background on the KD and ketone body supplements in the context of obesity and exercise performance. The effectiveness of these dietary or supplementation strategies as a therapy for weight loss or as an ergogenic aid will be discussed. In addition, the recent evidence that indicates ketone body metabolism is a potential target for cardiac dysfunction will be reviewed

    The Effects of Fasting or Ketogenic Diet on Endurance Exercise Performance and Metabolism in Female Mice

    Get PDF
    The promotion of ketone body (KB) metabolism via ketosis has been suggested as a strategy to increase exercise performance. However, studies in humans and animals have yielded inconsistent results. The purpose of the current study was to examine the effects of ketosis, achieved via fasting or a short-term ketogenic diet (KD), on endurance exercise performance in female mice. After 8 h of fasting, serum KB significantly increased and serum glucose significantly decreased in fasted compared to fed mice. When subjected to an endurance exercise capacity (EEC) test on a motorized treadmill, both fed and fasted mice showed similar EEC performance. A 5-week KD (90% calories from fat) significantly increased serum KB but did not increase EEC times compared to chow-fed mice. KD mice gained significantly more weight than chow-fed mice and had greater adipose tissue mass. Biochemical tissue analysis showed that KD led to significant increases in triglyceride content in the heart and liver and significant decreases in glycogen content in the muscle and liver. Furthermore, KD downregulated genes involved in glucose and KB oxidation and upregulated genes involved in lipid metabolism in the heart. These findings suggest that a short-term KD is not an effective strategy to enhance exercise performance and may lead to increased adiposity, abnormal endogenous tissue storage, and cardiometabolic remodeling

    Sex Differences in Endurance Exercise Capacity and Skeletal Muscle Lipid Metabolism in Mice

    Get PDF
    Previous studies suggest that sex differences in lipid metabolism exist with females demonstrating a higher utilization of lipids during exercise, which is mediated partly by increased utilization of muscle triglycerides. However, whether these changes in lipid metabolism contribute directly to endurance exercise performance is unclear. Therefore, the objective of this study was to investigate the contribution of exercise substrate metabolism to sex differences in endurance exercise capacity (EEC) in mice. Male and female C57BL/6-NCrl mice were subjected to an EEC test until exhaustion on a motorized treadmill. The treadmill was set at a 10% incline, and the speed gradually increased from 10.2 m/min to 22.2 m/min at fixed intervals for up to 2.5 h. Tissues and blood were harvested in mice immediately following the EEC. A cohort of sedentary, non-exercised male and female mice were used as controls. Females outperformed males by ~25% on the EEC. Serum levels of both fatty acids and ketone bodies were ~50% higher in females at the end of the EEC. In sedentary female mice, skeletal muscle triglyceride content was significantly greater compared to sedentary males. Gene expression analysis demonstrated that genes involved in skeletal muscle fatty acid oxidation were significantly higher in females with no changes in genes associated with glucose uptake or ketone body oxidation. The findings suggest that female mice have a higher endurance exercise capacity and a greater ability to mobilize and utilize fatty acids for energy

    Sex- and Age-Specific Differences in Mice Fed a Ketogenic Diet

    Get PDF
    The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that results in the elevation of serum ketone bodies, known as ketosis. This metabolic consequence has been suggested as a method for treating neurological conditions, improving exercise performance, and facilitating weight loss for overweight individuals. However, since most research primarily uses male populations, little is known about the potential sex differences during the consumption of the KD. In addition, the effects of the KD on aging are relatively unexplored. Therefore, the purpose of this study was to explore sex- and age-specific differences in mice fed the KD. Male and female C57BL/6N mice at either 12 wks or 24 wks of age were randomly assigned to a KD (90% fat, 1% carbohydrate) or chow (13% fat, 60% carbohydrate) group for 6 wks. KD induced weight gain, increased adiposity, induced hyperlipidemia, caused lipid accumulation in the heart and liver, and led to glycogen depletion in the heart, liver, and muscle with varying degrees of changes depending on age and sex. While younger and older male mice on the KD were prone to glucose intolerance, the KD acutely improved rotarod performance in younger females. Overall, this study highlights potential sex and aging differences in the adaptation to the KD

    The Effects of Exercise Training on Glucose Homeostasis and Muscle Metabolism in Type 1 Diabetic Female Mice

    Get PDF
    Although exercise training is an important recommendation for the management of type 1 diabetes (T1D), most of the available research studies predominantly focus on male subjects. Given the importance of sex as a biological variable, additional studies are required to improve the knowledge gap regarding sex differences in T1D research. Therefore, the purpose of this study was to examine the role of exercise training in mediating changes in glucose homeostasis and skeletal muscle metabolism in T1D female mice. Female mice were injected with streptozotocin (STZ) to induce T1D. Two weeks after STZ injection, control (CON) and STZ mice were exercise trained on a treadmill for 4 weeks. Aerobic exercise training failed to improve glucose tolerance, prevent the decrease in body weight and adipose tissue mass, or attenuate muscle atrophy in T1D female mice. However, insulin sensitivity was improved in T1D female mice after exercise training. Aerobic exercise training maintained skeletal muscle triglyceride content but did not prevent depletion of skeletal muscle or liver glycogen in T1D mice. Gene expression analysis suggested that T1D resulted in decreased glucose transport, decreased ketone body oxidation, and increased fatty acid metabolism in the skeletal muscle, which was not altered by exercise training. These data demonstrate that 4 weeks of aerobic exercise training of a moderate intensity is insufficient to counteract the negative effects of T1D in female mice, but does lead to an improvement in insulin sensitivity

    An “Exercise” in Cardiac Metabolism

    Get PDF
    Research has demonstrated that the high capacity requirements of the heart are satisfied by a preference for oxidation of fatty acids. However, it is well known that a stressed heart, as in pathological hypertrophy, deviates from its inherent profile and relies heavily on glucose metabolism, primarily achieved by an acceleration in glycolysis. Moreover, it has been suggested that the chronically lipid overloaded heart augments fatty acid oxidation and triglyceride synthesis to an even greater degree and, thus, develops a lipotoxic phenotype. In comparison, classic studies in exercise physiology have provided a basis for the acute metabolic changes that occur during physical activity. During an acute bout of exercise, whole body glucose metabolism increases proportionately to intensity while fatty acid metabolism gradually increases throughout the duration of activity, particularly during moderate intensity. However, the studies in chronic exercise training are primarily limited to metabolic adaptations in skeletal muscle or to the mechanisms that govern physiological signaling pathways in the heart. Therefore, the purpose of this review is to discuss the precise changes that chronic exercise training elicits on cardiac metabolism, particularly on substrate utilization. Although conflicting data exists, a pattern of enhanced fatty oxidation and normalization of glycolysis emerges, which may be a therapeutic strategy to prevent or regress the metabolic phenotype of the hypertrophied heart. This review also expands on the metabolic adaptations that chronic exercise training elicits in amino acid and ketone body metabolism, which have become of increased interest recently. Lastly, challenges with exercise training studies, which could relate to several variables including model, training modality, and metabolic parameter assessed, are examined

    Special Issue on Metabolic Adaptations in Cardiac and Skeletal Muscle during Acute and Chronic Exercise

    No full text
    Research in the field of exercise physiology has evolved dramatically over the last century [...
    corecore