27 research outputs found
A communal catalogue reveals Earth’s multiscale microbial diversity
Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity
A communal catalogue reveals Earth's multiscale microbial diversity
Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe
41: 470Á478, 2010 # 2010 The Authors. J. Compilation #
Evidence is mounting that female animals use egg-yolk compounds (e.g. steroids, antioxidants) to adaptively engineer the quality of their offspring as a function of several maternal and environmental factors. Though adjustments to yolk allocation have been well-characterized as a function of parental phenotypes, we know very little about how an individual's social environment influences yolk composition. Here, we consider how two types of yolk compounds, androgens and carotenoids, relate to the maternal social environment during the egg-laying period, controlling statistically for known correlations between various aspects of parental quality and egg yolk compounds. Barn swallows Hirundo rustica erythrogaster breed in groups of highly variable size and spacing, allowing us to test whether or not the social environment is correlated with these maternal effects. We found no relationship between carotenoid levels in eggs as a function of colony size, colony density, or nearest-neighbor distance. However, eggs from females in larger groups had lower concentrations and total amounts of yolk androgens than those from females in smaller, less dense social settings. Our results counter previous predictions and literature, showing that females breeding in large groups deposit more androgen in eggs, mechanistically, because they compete more with conspecifics and have higher circulating androgen levels themselves and, functionally, because it could be advantageous for their offspring to show high androgen-mediated competitive abilities early in life. Instead, because group size in this species is governed largely by site fidelity and the availability of old nests for re-use, and because reproductive output does not differ as a function of group size, it may be that competition is greater for limited nests in small groups, thus elevating androgen levels. Further, yolk androgens were previously shown to be affected by male quality, and the greater concentrations and amounts of yolk androgens in smaller sites may reflect differential allocation to darker males found at these sites