4 research outputs found

    New Measles Genotype, Uganda

    Get PDF
    We report the first genetic characterization of wildtype measles viruses from Uganda. Thirty-six virus isolates from outbreaks in 6 districts were analyzed from 2000 to 2002. Analyses of sequences of the nucleoprotein (N) and hemagglutinin (H) genes showed that the Ugandan isolates were all closely related, and phylogenetic analysis indicated that these viruses were members of a unique group within clade D. Sequences of the Ugandan viruses were not closely related to any of the World Health Organization reference sequences representing the 22 currently recognized genotypes. The minimum nucleotide divergence between the Ugandan viruses and the most closely related reference strain, genotype D2, was 3.1% for the N gene and 2.6% for the H gene. Therefore, Ugandan viruses should be considered a new, proposed genotype (d10). This new sequence information will expand the utility of molecular epidemiologic techniques for describing measles transmission patterns in eastern Africa

    Molecular Epidemiology of Measles Viruses in the United States, 1997–2001

    Get PDF
    From 1997 to 2001, sequence data from 55 clinical specimens were obtained from confirmed measles cases in the United States, representing 21 outbreaks and 34 sporadic cases. Sequence analysis indicated the presence of 11 of the recognized genotypes. The most common genotypes detected were genotype D6, usually identified from imported cases from Europe, and genotype D5, associated with importations from Japan. A number of viruses belonging to genotype D4 were imported from India and Pakistan. Overall, viral genotypes were determined for 13 chains of transmission with an unknown source of virus, and seven different genotypes were identified. Therefore, the diversity of Measles virus genotypes observed in the United States from 1997 to 2001 reflected multiple imported sources of virus and indicated that no strain of measles is endemic in the United States

    Characterization of a novel coronavirus associated with severe acute respiratory syndrome

    No full text
    In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses
    corecore